MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumxp Structured version   Unicode version

Theorem gsumxp 16790
Description: Write a group sum over a cartesian product as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
gsumxp.b  |-  B  =  ( Base `  G
)
gsumxp.z  |-  .0.  =  ( 0g `  G )
gsumxp.g  |-  ( ph  ->  G  e. CMnd )
gsumxp.a  |-  ( ph  ->  A  e.  V )
gsumxp.r  |-  ( ph  ->  C  e.  W )
gsumxp.f  |-  ( ph  ->  F : ( A  X.  C ) --> B )
gsumxp.w  |-  ( ph  ->  F finSupp  .0.  )
Assertion
Ref Expression
gsumxp  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  ( j F k ) ) ) ) ) )
Distinct variable groups:    j, k,  .0.    j, G, k    ph, j,
k    A, j, k    B, j, k    C, j, k   
j, F, k    j, V
Allowed substitution hints:    V( k)    W( j, k)

Proof of Theorem gsumxp
StepHypRef Expression
1 gsumxp.b . . 3  |-  B  =  ( Base `  G
)
2 gsumxp.z . . 3  |-  .0.  =  ( 0g `  G )
3 gsumxp.g . . 3  |-  ( ph  ->  G  e. CMnd )
4 gsumxp.a . . . 4  |-  ( ph  ->  A  e.  V )
5 gsumxp.r . . . 4  |-  ( ph  ->  C  e.  W )
6 xpexg 6704 . . . 4  |-  ( ( A  e.  V  /\  C  e.  W )  ->  ( A  X.  C
)  e.  _V )
74, 5, 6syl2anc 661 . . 3  |-  ( ph  ->  ( A  X.  C
)  e.  _V )
8 relxp 5103 . . . 4  |-  Rel  ( A  X.  C )
98a1i 11 . . 3  |-  ( ph  ->  Rel  ( A  X.  C ) )
10 dmxpss 5431 . . . 4  |-  dom  ( A  X.  C )  C_  A
1110a1i 11 . . 3  |-  ( ph  ->  dom  ( A  X.  C )  C_  A
)
12 gsumxp.f . . 3  |-  ( ph  ->  F : ( A  X.  C ) --> B )
13 gsumxp.w . . 3  |-  ( ph  ->  F finSupp  .0.  )
141, 2, 3, 7, 9, 4, 11, 12, 13gsum2d 16785 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( j  e.  A  |->  ( G  gsumg  ( k  e.  ( ( A  X.  C
) " { j } )  |->  ( j F k ) ) ) ) ) )
15 df-ima 5007 . . . . . . 7  |-  ( ( A  X.  C )
" { j } )  =  ran  (
( A  X.  C
)  |`  { j } )
16 df-res 5006 . . . . . . . . . . 11  |-  ( ( A  X.  C )  |`  { j } )  =  ( ( A  X.  C )  i^i  ( { j }  X.  _V ) )
17 inxp 5128 . . . . . . . . . . 11  |-  ( ( A  X.  C )  i^i  ( { j }  X.  _V )
)  =  ( ( A  i^i  { j } )  X.  ( C  i^i  _V ) )
1816, 17eqtri 2491 . . . . . . . . . 10  |-  ( ( A  X.  C )  |`  { j } )  =  ( ( A  i^i  { j } )  X.  ( C  i^i  _V ) )
19 simpr 461 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  A )  ->  j  e.  A )
2019snssd 4167 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  A )  ->  { j }  C_  A )
21 sseqin2 3712 . . . . . . . . . . . 12  |-  ( { j }  C_  A  <->  ( A  i^i  { j } )  =  {
j } )
2220, 21sylib 196 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  A )  ->  ( A  i^i  { j } )  =  { j } )
23 inv1 3807 . . . . . . . . . . . 12  |-  ( C  i^i  _V )  =  C
2423a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  A )  ->  ( C  i^i  _V )  =  C )
2522, 24xpeq12d 5019 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  A )  ->  (
( A  i^i  {
j } )  X.  ( C  i^i  _V ) )  =  ( { j }  X.  C ) )
2618, 25syl5eq 2515 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  A )  ->  (
( A  X.  C
)  |`  { j } )  =  ( { j }  X.  C
) )
2726rneqd 5223 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A )  ->  ran  ( ( A  X.  C )  |`  { j } )  =  ran  ( { j }  X.  C ) )
28 vex 3111 . . . . . . . . . 10  |-  j  e. 
_V
2928snnz 4140 . . . . . . . . 9  |-  { j }  =/=  (/)
30 rnxp 5430 . . . . . . . . 9  |-  ( { j }  =/=  (/)  ->  ran  ( { j }  X.  C )  =  C )
3129, 30ax-mp 5 . . . . . . . 8  |-  ran  ( { j }  X.  C )  =  C
3227, 31syl6eq 2519 . . . . . . 7  |-  ( (
ph  /\  j  e.  A )  ->  ran  ( ( A  X.  C )  |`  { j } )  =  C )
3315, 32syl5eq 2515 . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  (
( A  X.  C
) " { j } )  =  C )
3433mpteq1d 4523 . . . . 5  |-  ( (
ph  /\  j  e.  A )  ->  (
k  e.  ( ( A  X.  C )
" { j } )  |->  ( j F k ) )  =  ( k  e.  C  |->  ( j F k ) ) )
3534oveq2d 6293 . . . 4  |-  ( (
ph  /\  j  e.  A )  ->  ( G  gsumg  ( k  e.  ( ( A  X.  C
) " { j } )  |->  ( j F k ) ) )  =  ( G 
gsumg  ( k  e.  C  |->  ( j F k ) ) ) )
3635mpteq2dva 4528 . . 3  |-  ( ph  ->  ( j  e.  A  |->  ( G  gsumg  ( k  e.  ( ( A  X.  C
) " { j } )  |->  ( j F k ) ) ) )  =  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  ( j F k ) ) ) ) )
3736oveq2d 6293 . 2  |-  ( ph  ->  ( G  gsumg  ( j  e.  A  |->  ( G  gsumg  ( k  e.  ( ( A  X.  C
) " { j } )  |->  ( j F k ) ) ) ) )  =  ( G  gsumg  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  ( j F k ) ) ) ) ) )
3814, 37eqtrd 2503 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  ( j F k ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2657   _Vcvv 3108    i^i cin 3470    C_ wss 3471   (/)c0 3780   {csn 4022   class class class wbr 4442    |-> cmpt 4500    X. cxp 4992   dom cdm 4994   ran crn 4995    |` cres 4996   "cima 4997   Rel wrel 4999   -->wf 5577   ` cfv 5581  (class class class)co 6277   finSupp cfsupp 7820   Basecbs 14481   0gc0g 14686    gsumg cgsu 14687  CMndccmn 16589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-inf2 8049  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-int 4278  df-iun 4322  df-iin 4323  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-se 4834  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6517  df-om 6674  df-1st 6776  df-2nd 6777  df-supp 6894  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-fin 7512  df-fsupp 7821  df-oi 7926  df-card 8311  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-nn 10528  df-2 10585  df-n0 10787  df-z 10856  df-uz 11074  df-fz 11664  df-fzo 11784  df-seq 12066  df-hash 12363  df-ndx 14484  df-slot 14485  df-base 14486  df-sets 14487  df-ress 14488  df-plusg 14559  df-0g 14688  df-gsum 14689  df-mre 14832  df-mrc 14833  df-acs 14835  df-mnd 15723  df-submnd 15773  df-mulg 15856  df-cntz 16145  df-cmn 16591
This theorem is referenced by:  tsmsxplem1  20385  tsmsxplem2  20386
  Copyright terms: Public domain W3C validator