MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwspan Structured version   Unicode version

Theorem gsumwspan 15539
Description: The submonoid generated by a set of elements is precisely the set of elements which can be expressed as finite products of the generator. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
gsumwspan.b  |-  B  =  ( Base `  M
)
gsumwspan.k  |-  K  =  (mrCls `  (SubMnd `  M
) )
Assertion
Ref Expression
gsumwspan  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( K `  G
)  =  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) ) )
Distinct variable groups:    w, G    w, B    w, M    w, K

Proof of Theorem gsumwspan
Dummy variables  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumwspan.b . . . . . 6  |-  B  =  ( Base `  M
)
21submacs 15508 . . . . 5  |-  ( M  e.  Mnd  ->  (SubMnd `  M )  e.  (ACS
`  B ) )
32acsmred 14609 . . . 4  |-  ( M  e.  Mnd  ->  (SubMnd `  M )  e.  (Moore `  B ) )
43adantr 465 . . 3  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
(SubMnd `  M )  e.  (Moore `  B )
)
5 simpr 461 . . . . . . . 8  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  x  e.  G
)  ->  x  e.  G )
65s1cld 12309 . . . . . . 7  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  x  e.  G
)  ->  <" x ">  e. Word  G )
7 ssel2 3366 . . . . . . . . . 10  |-  ( ( G  C_  B  /\  x  e.  G )  ->  x  e.  B )
87adantll 713 . . . . . . . . 9  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  x  e.  G
)  ->  x  e.  B )
91gsumws1 15532 . . . . . . . . 9  |-  ( x  e.  B  ->  ( M  gsumg 
<" x "> )  =  x )
108, 9syl 16 . . . . . . . 8  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  x  e.  G
)  ->  ( M  gsumg  <" x "> )  =  x )
1110eqcomd 2448 . . . . . . 7  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  x  e.  G
)  ->  x  =  ( M  gsumg 
<" x "> ) )
12 oveq2 6114 . . . . . . . . 9  |-  ( w  =  <" x ">  ->  ( M  gsumg  w )  =  ( M 
gsumg  <" x "> ) )
1312eqeq2d 2454 . . . . . . . 8  |-  ( w  =  <" x ">  ->  ( x  =  ( M  gsumg  w )  <-> 
x  =  ( M 
gsumg  <" x "> ) ) )
1413rspcev 3088 . . . . . . 7  |-  ( (
<" x ">  e. Word  G  /\  x  =  ( M  gsumg 
<" x "> ) )  ->  E. w  e. Word  G x  =  ( M  gsumg  w ) )
156, 11, 14syl2anc 661 . . . . . 6  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  x  e.  G
)  ->  E. w  e. Word  G x  =  ( M  gsumg  w ) )
16 vex 2990 . . . . . . 7  |-  x  e. 
_V
17 eqid 2443 . . . . . . . 8  |-  ( w  e. Word  G  |->  ( M 
gsumg  w ) )  =  ( w  e. Word  G  |->  ( M  gsumg  w ) )
1817elrnmpt 5101 . . . . . . 7  |-  ( x  e.  _V  ->  (
x  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) )  <->  E. w  e. Word  G x  =  ( M  gsumg  w ) ) )
1916, 18ax-mp 5 . . . . . 6  |-  ( x  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) )  <->  E. w  e. Word  G x  =  ( M  gsumg  w ) )
2015, 19sylibr 212 . . . . 5  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  x  e.  G
)  ->  x  e.  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
2120ex 434 . . . 4  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( x  e.  G  ->  x  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) ) ) )
2221ssrdv 3377 . . 3  |-  ( ( M  e.  Mnd  /\  G  C_  B )  ->  G  C_  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) )
23 gsumwspan.k . . . . . . . . . . 11  |-  K  =  (mrCls `  (SubMnd `  M
) )
2423mrccl 14564 . . . . . . . . . 10  |-  ( ( (SubMnd `  M )  e.  (Moore `  B )  /\  G  C_  B )  ->  ( K `  G )  e.  (SubMnd `  M ) )
253, 24sylan 471 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( K `  G
)  e.  (SubMnd `  M ) )
2625adantr 465 . . . . . . . 8  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  w  e. Word  G )  ->  ( K `  G )  e.  (SubMnd `  M ) )
2723mrcssid 14570 . . . . . . . . . . 11  |-  ( ( (SubMnd `  M )  e.  (Moore `  B )  /\  G  C_  B )  ->  G  C_  ( K `  G )
)
283, 27sylan 471 . . . . . . . . . 10  |-  ( ( M  e.  Mnd  /\  G  C_  B )  ->  G  C_  ( K `  G ) )
29 sswrd 12257 . . . . . . . . . 10  |-  ( G 
C_  ( K `  G )  -> Word  G  C_ Word  ( K `  G ) )
3028, 29syl 16 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> Word  G 
C_ Word  ( K `  G
) )
3130sselda 3371 . . . . . . . 8  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  w  e. Word  G )  ->  w  e. Word  ( K `  G )
)
32 gsumwsubmcl 15531 . . . . . . . 8  |-  ( ( ( K `  G
)  e.  (SubMnd `  M )  /\  w  e. Word  ( K `  G
) )  ->  ( M  gsumg  w )  e.  ( K `  G ) )
3326, 31, 32syl2anc 661 . . . . . . 7  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  w  e. Word  G )  ->  ( M  gsumg  w )  e.  ( K `  G ) )
3433, 17fmptd 5882 . . . . . 6  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( w  e. Word  G  |->  ( M  gsumg  w ) ) :Word 
G --> ( K `  G ) )
35 frn 5580 . . . . . 6  |-  ( ( w  e. Word  G  |->  ( M  gsumg  w ) ) :Word 
G --> ( K `  G )  ->  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  C_  ( K `  G ) )
3634, 35syl 16 . . . . 5  |-  ( ( M  e.  Mnd  /\  G  C_  B )  ->  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  C_  ( K `  G ) )
373, 23mrcssvd 14576 . . . . . 6  |-  ( M  e.  Mnd  ->  ( K `  G )  C_  B )
3837adantr 465 . . . . 5  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( K `  G
)  C_  B )
3936, 38sstrd 3381 . . . 4  |-  ( ( M  e.  Mnd  /\  G  C_  B )  ->  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  C_  B )
40 wrd0 12267 . . . . . 6  |-  (/)  e. Word  G
41 eqid 2443 . . . . . . . . 9  |-  ( 0g
`  M )  =  ( 0g `  M
)
4241gsum0 15525 . . . . . . . 8  |-  ( M 
gsumg  (/) )  =  ( 0g
`  M )
4342eqcomi 2447 . . . . . . 7  |-  ( 0g
`  M )  =  ( M  gsumg  (/) )
4443a1i 11 . . . . . 6  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( 0g `  M
)  =  ( M 
gsumg  (/) ) )
45 oveq2 6114 . . . . . . . 8  |-  ( w  =  (/)  ->  ( M 
gsumg  w )  =  ( M  gsumg  (/) ) )
4645eqeq2d 2454 . . . . . . 7  |-  ( w  =  (/)  ->  ( ( 0g `  M )  =  ( M  gsumg  w )  <-> 
( 0g `  M
)  =  ( M 
gsumg  (/) ) ) )
4746rspcev 3088 . . . . . 6  |-  ( (
(/)  e. Word  G  /\  ( 0g `  M )  =  ( M  gsumg  (/) ) )  ->  E. w  e. Word  G ( 0g `  M )  =  ( M  gsumg  w ) )
4840, 44, 47sylancr 663 . . . . 5  |-  ( ( M  e.  Mnd  /\  G  C_  B )  ->  E. w  e. Word  G ( 0g `  M )  =  ( M  gsumg  w ) )
49 fvex 5716 . . . . . 6  |-  ( 0g
`  M )  e. 
_V
5017elrnmpt 5101 . . . . . 6  |-  ( ( 0g `  M )  e.  _V  ->  (
( 0g `  M
)  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) )  <->  E. w  e. Word  G ( 0g `  M )  =  ( M  gsumg  w ) ) )
5149, 50ax-mp 5 . . . . 5  |-  ( ( 0g `  M )  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) )  <->  E. w  e. Word  G ( 0g `  M )  =  ( M  gsumg  w ) )
5248, 51sylibr 212 . . . 4  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( 0g `  M
)  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) ) )
53 ccatcl 12289 . . . . . . . . 9  |-  ( ( z  e. Word  G  /\  v  e. Word  G )  ->  ( z concat  v )  e. Word  G )
5453adantl 466 . . . . . . . 8  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  ( z concat  v )  e. Word  G )
55 simpll 753 . . . . . . . . . 10  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  M  e.  Mnd )
56 sswrd 12257 . . . . . . . . . . . 12  |-  ( G 
C_  B  -> Word  G  C_ Word  B )
5756ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  -> Word  G  C_ Word  B )
58 simprl 755 . . . . . . . . . . 11  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  z  e. Word  G )
5957, 58sseldd 3372 . . . . . . . . . 10  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  z  e. Word  B )
60 simprr 756 . . . . . . . . . . 11  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  v  e. Word  G )
6157, 60sseldd 3372 . . . . . . . . . 10  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  v  e. Word  B )
62 eqid 2443 . . . . . . . . . . 11  |-  ( +g  `  M )  =  ( +g  `  M )
631, 62gsumccat 15534 . . . . . . . . . 10  |-  ( ( M  e.  Mnd  /\  z  e. Word  B  /\  v  e. Word  B )  ->  ( M  gsumg  ( z concat  v ) )  =  ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) ) )
6455, 59, 61, 63syl3anc 1218 . . . . . . . . 9  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  ( M  gsumg  ( z concat  v ) )  =  ( ( M 
gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) ) )
6564eqcomd 2448 . . . . . . . 8  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  =  ( M  gsumg  ( z concat  v ) ) )
66 oveq2 6114 . . . . . . . . . 10  |-  ( w  =  ( z concat  v
)  ->  ( M  gsumg  w )  =  ( M 
gsumg  ( z concat  v )
) )
6766eqeq2d 2454 . . . . . . . . 9  |-  ( w  =  ( z concat  v
)  ->  ( (
( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  =  ( M  gsumg  w )  <->  ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  =  ( M  gsumg  ( z concat  v ) ) ) )
6867rspcev 3088 . . . . . . . 8  |-  ( ( ( z concat  v )  e. Word  G  /\  (
( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  =  ( M  gsumg  ( z concat  v ) ) )  ->  E. w  e. Word  G ( ( M 
gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  =  ( M  gsumg  w ) )
6954, 65, 68syl2anc 661 . . . . . . 7  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  E. w  e. Word  G ( ( M 
gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  =  ( M  gsumg  w ) )
70 ovex 6131 . . . . . . . 8  |-  ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
_V
7117elrnmpt 5101 . . . . . . . 8  |-  ( ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
_V  ->  ( ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  E. w  e. Word  G
( ( M  gsumg  z ) ( +g  `  M
) ( M  gsumg  v ) )  =  ( M 
gsumg  w ) ) )
7270, 71ax-mp 5 . . . . . . 7  |-  ( ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  E. w  e. Word  G
( ( M  gsumg  z ) ( +g  `  M
) ( M  gsumg  v ) )  =  ( M 
gsumg  w ) )
7369, 72sylibr 212 . . . . . 6  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
7473ralrimivva 2823 . . . . 5  |-  ( ( M  e.  Mnd  /\  G  C_  B )  ->  A. z  e. Word  G A. v  e. Word  G (
( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
75 oveq2 6114 . . . . . . . . 9  |-  ( w  =  z  ->  ( M  gsumg  w )  =  ( M  gsumg  z ) )
7675cbvmptv 4398 . . . . . . . 8  |-  ( w  e. Word  G  |->  ( M 
gsumg  w ) )  =  ( z  e. Word  G  |->  ( M  gsumg  z ) )
7776rneqi 5081 . . . . . . 7  |-  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) )  =  ran  ( z  e. Word  G  |->  ( M  gsumg  z ) )
7877raleqi 2936 . . . . . 6  |-  ( A. x  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) A. y  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. x  e.  ran  ( z  e. Word  G  |->  ( M  gsumg  z ) ) A. y  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
79 oveq2 6114 . . . . . . . . . . 11  |-  ( w  =  v  ->  ( M  gsumg  w )  =  ( M  gsumg  v ) )
8079cbvmptv 4398 . . . . . . . . . 10  |-  ( w  e. Word  G  |->  ( M 
gsumg  w ) )  =  ( v  e. Word  G  |->  ( M  gsumg  v ) )
8180rneqi 5081 . . . . . . . . 9  |-  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) )  =  ran  ( v  e. Word  G  |->  ( M  gsumg  v ) )
8281raleqi 2936 . . . . . . . 8  |-  ( A. y  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. y  e.  ran  ( v  e. Word  G  |->  ( M  gsumg  v ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
83 eqid 2443 . . . . . . . . . 10  |-  ( v  e. Word  G  |->  ( M 
gsumg  v ) )  =  ( v  e. Word  G  |->  ( M  gsumg  v ) )
84 oveq2 6114 . . . . . . . . . . 11  |-  ( y  =  ( M  gsumg  v )  ->  ( x ( +g  `  M ) y )  =  ( x ( +g  `  M
) ( M  gsumg  v ) ) )
8584eleq1d 2509 . . . . . . . . . 10  |-  ( y  =  ( M  gsumg  v )  ->  ( ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  ( x ( +g  `  M ) ( M  gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) ) )
8683, 85ralrnmpt 5867 . . . . . . . . 9  |-  ( A. v  e. Word  G ( M  gsumg  v )  e.  _V  ->  ( A. y  e. 
ran  ( v  e. Word  G  |->  ( M  gsumg  v ) ) ( x ( +g  `  M ) y )  e.  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. v  e. Word  G ( x ( +g  `  M ) ( M  gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) ) )
87 ovex 6131 . . . . . . . . . 10  |-  ( M 
gsumg  v )  e.  _V
8887a1i 11 . . . . . . . . 9  |-  ( v  e. Word  G  ->  ( M  gsumg  v )  e.  _V )
8986, 88mprg 2800 . . . . . . . 8  |-  ( A. y  e.  ran  ( v  e. Word  G  |->  ( M 
gsumg  v ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. v  e. Word  G
( x ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
9082, 89bitri 249 . . . . . . 7  |-  ( A. y  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. v  e. Word  G
( x ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
9190ralbii 2754 . . . . . 6  |-  ( A. x  e.  ran  ( z  e. Word  G  |->  ( M 
gsumg  z ) ) A. y  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. x  e.  ran  ( z  e. Word  G  |->  ( M  gsumg  z ) ) A. v  e. Word  G (
x ( +g  `  M
) ( M  gsumg  v ) )  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) ) )
92 eqid 2443 . . . . . . . 8  |-  ( z  e. Word  G  |->  ( M 
gsumg  z ) )  =  ( z  e. Word  G  |->  ( M  gsumg  z ) )
93 oveq1 6113 . . . . . . . . . 10  |-  ( x  =  ( M  gsumg  z )  ->  ( x ( +g  `  M ) ( M  gsumg  v ) )  =  ( ( M  gsumg  z ) ( +g  `  M
) ( M  gsumg  v ) ) )
9493eleq1d 2509 . . . . . . . . 9  |-  ( x  =  ( M  gsumg  z )  ->  ( ( x ( +g  `  M
) ( M  gsumg  v ) )  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) )  <->  ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) ) )
9594ralbidv 2750 . . . . . . . 8  |-  ( x  =  ( M  gsumg  z )  ->  ( A. v  e. Word  G ( x ( +g  `  M ) ( M  gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. v  e. Word  G
( ( M  gsumg  z ) ( +g  `  M
) ( M  gsumg  v ) )  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) ) ) )
9692, 95ralrnmpt 5867 . . . . . . 7  |-  ( A. z  e. Word  G ( M  gsumg  z )  e.  _V  ->  ( A. x  e. 
ran  ( z  e. Word  G  |->  ( M  gsumg  z ) ) A. v  e. Word  G ( x ( +g  `  M ) ( M  gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. z  e. Word  G A. v  e. Word  G ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) ) )
97 ovex 6131 . . . . . . . 8  |-  ( M 
gsumg  z )  e.  _V
9897a1i 11 . . . . . . 7  |-  ( z  e. Word  G  ->  ( M  gsumg  z )  e.  _V )
9996, 98mprg 2800 . . . . . 6  |-  ( A. x  e.  ran  ( z  e. Word  G  |->  ( M 
gsumg  z ) ) A. v  e. Word  G (
x ( +g  `  M
) ( M  gsumg  v ) )  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. z  e. Word  G A. v  e. Word  G ( ( M 
gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
10078, 91, 993bitri 271 . . . . 5  |-  ( A. x  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) A. y  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. z  e. Word  G A. v  e. Word  G ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
10174, 100sylibr 212 . . . 4  |-  ( ( M  e.  Mnd  /\  G  C_  B )  ->  A. x  e.  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) A. y  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
1021, 41, 62issubm 15490 . . . . 5  |-  ( M  e.  Mnd  ->  ( ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  e.  (SubMnd `  M )  <->  ( ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  C_  B  /\  ( 0g `  M )  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) )  /\  A. x  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) ) A. y  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) ) ) )
103102adantr 465 . . . 4  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  e.  (SubMnd `  M )  <->  ( ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  C_  B  /\  ( 0g `  M )  e.  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  /\  A. x  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) ) A. y  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) ) ) )
10439, 52, 101, 103mpbir3and 1171 . . 3  |-  ( ( M  e.  Mnd  /\  G  C_  B )  ->  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  e.  (SubMnd `  M )
)
10523mrcsscl 14573 . . 3  |-  ( ( (SubMnd `  M )  e.  (Moore `  B )  /\  G  C_  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) )  /\  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  e.  (SubMnd `  M )
)  ->  ( K `  G )  C_  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
1064, 22, 104, 105syl3anc 1218 . 2  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( K `  G
)  C_  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) )
107106, 36eqssd 3388 1  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( K `  G
)  =  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2730   E.wrex 2731   _Vcvv 2987    C_ wss 3343   (/)c0 3652    e. cmpt 4365   ran crn 4856   -->wf 5429   ` cfv 5433  (class class class)co 6106  Word cword 12236   concat cconcat 12238   <"cs1 12239   Basecbs 14189   +g cplusg 14253   0gc0g 14393    gsumg cgsu 14394  Moorecmre 14535  mrClscmrc 14536   Mndcmnd 15424  SubMndcsubmnd 15478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4418  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-cnex 9353  ax-resscn 9354  ax-1cn 9355  ax-icn 9356  ax-addcl 9357  ax-addrcl 9358  ax-mulcl 9359  ax-mulrcl 9360  ax-mulcom 9361  ax-addass 9362  ax-mulass 9363  ax-distr 9364  ax-i2m1 9365  ax-1ne0 9366  ax-1rid 9367  ax-rnegex 9368  ax-rrecex 9369  ax-cnre 9370  ax-pre-lttri 9371  ax-pre-lttrn 9372  ax-pre-ltadd 9373  ax-pre-mulgt0 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-uni 4107  df-int 4144  df-iun 4188  df-iin 4189  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-riota 6067  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-om 6492  df-1st 6592  df-2nd 6593  df-recs 6847  df-rdg 6881  df-1o 6935  df-oadd 6939  df-er 7116  df-en 7326  df-dom 7327  df-sdom 7328  df-fin 7329  df-card 8124  df-pnf 9435  df-mnf 9436  df-xr 9437  df-ltxr 9438  df-le 9439  df-sub 9612  df-neg 9613  df-nn 10338  df-2 10395  df-n0 10595  df-z 10662  df-uz 10877  df-fz 11453  df-fzo 11564  df-seq 11822  df-hash 12119  df-word 12244  df-concat 12246  df-s1 12247  df-ndx 14192  df-slot 14193  df-base 14194  df-sets 14195  df-ress 14196  df-plusg 14266  df-0g 14395  df-gsum 14396  df-mre 14539  df-mrc 14540  df-acs 14542  df-mnd 15430  df-submnd 15480
This theorem is referenced by:  psgneldm2  16025  psgnfitr  16038
  Copyright terms: Public domain W3C validator