MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwspan Structured version   Unicode version

Theorem gsumwspan 16623
Description: The submonoid generated by a set of elements is precisely the set of elements which can be expressed as finite products of the generator. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
gsumwspan.b  |-  B  =  ( Base `  M
)
gsumwspan.k  |-  K  =  (mrCls `  (SubMnd `  M
) )
Assertion
Ref Expression
gsumwspan  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( K `  G
)  =  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) ) )
Distinct variable groups:    w, G    w, B    w, M    w, K

Proof of Theorem gsumwspan
Dummy variables  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumwspan.b . . . . . 6  |-  B  =  ( Base `  M
)
21submacs 16605 . . . . 5  |-  ( M  e.  Mnd  ->  (SubMnd `  M )  e.  (ACS
`  B ) )
32acsmred 15555 . . . 4  |-  ( M  e.  Mnd  ->  (SubMnd `  M )  e.  (Moore `  B ) )
43adantr 467 . . 3  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
(SubMnd `  M )  e.  (Moore `  B )
)
5 simpr 463 . . . . . . . 8  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  x  e.  G
)  ->  x  e.  G )
65s1cld 12740 . . . . . . 7  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  x  e.  G
)  ->  <" x ">  e. Word  G )
7 ssel2 3460 . . . . . . . . . 10  |-  ( ( G  C_  B  /\  x  e.  G )  ->  x  e.  B )
87adantll 719 . . . . . . . . 9  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  x  e.  G
)  ->  x  e.  B )
91gsumws1 16616 . . . . . . . . 9  |-  ( x  e.  B  ->  ( M  gsumg 
<" x "> )  =  x )
108, 9syl 17 . . . . . . . 8  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  x  e.  G
)  ->  ( M  gsumg  <" x "> )  =  x )
1110eqcomd 2431 . . . . . . 7  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  x  e.  G
)  ->  x  =  ( M  gsumg 
<" x "> ) )
12 oveq2 6311 . . . . . . . . 9  |-  ( w  =  <" x ">  ->  ( M  gsumg  w )  =  ( M 
gsumg  <" x "> ) )
1312eqeq2d 2437 . . . . . . . 8  |-  ( w  =  <" x ">  ->  ( x  =  ( M  gsumg  w )  <-> 
x  =  ( M 
gsumg  <" x "> ) ) )
1413rspcev 3183 . . . . . . 7  |-  ( (
<" x ">  e. Word  G  /\  x  =  ( M  gsumg 
<" x "> ) )  ->  E. w  e. Word  G x  =  ( M  gsumg  w ) )
156, 11, 14syl2anc 666 . . . . . 6  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  x  e.  G
)  ->  E. w  e. Word  G x  =  ( M  gsumg  w ) )
16 vex 3085 . . . . . . 7  |-  x  e. 
_V
17 eqid 2423 . . . . . . . 8  |-  ( w  e. Word  G  |->  ( M 
gsumg  w ) )  =  ( w  e. Word  G  |->  ( M  gsumg  w ) )
1817elrnmpt 5098 . . . . . . 7  |-  ( x  e.  _V  ->  (
x  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) )  <->  E. w  e. Word  G x  =  ( M  gsumg  w ) ) )
1916, 18ax-mp 5 . . . . . 6  |-  ( x  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) )  <->  E. w  e. Word  G x  =  ( M  gsumg  w ) )
2015, 19sylibr 216 . . . . 5  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  x  e.  G
)  ->  x  e.  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
2120ex 436 . . . 4  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( x  e.  G  ->  x  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) ) ) )
2221ssrdv 3471 . . 3  |-  ( ( M  e.  Mnd  /\  G  C_  B )  ->  G  C_  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) )
23 gsumwspan.k . . . . . . . . . . 11  |-  K  =  (mrCls `  (SubMnd `  M
) )
2423mrccl 15510 . . . . . . . . . 10  |-  ( ( (SubMnd `  M )  e.  (Moore `  B )  /\  G  C_  B )  ->  ( K `  G )  e.  (SubMnd `  M ) )
253, 24sylan 474 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( K `  G
)  e.  (SubMnd `  M ) )
2625adantr 467 . . . . . . . 8  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  w  e. Word  G )  ->  ( K `  G )  e.  (SubMnd `  M ) )
2723mrcssid 15516 . . . . . . . . . . 11  |-  ( ( (SubMnd `  M )  e.  (Moore `  B )  /\  G  C_  B )  ->  G  C_  ( K `  G )
)
283, 27sylan 474 . . . . . . . . . 10  |-  ( ( M  e.  Mnd  /\  G  C_  B )  ->  G  C_  ( K `  G ) )
29 sswrd 12677 . . . . . . . . . 10  |-  ( G 
C_  ( K `  G )  -> Word  G  C_ Word  ( K `  G ) )
3028, 29syl 17 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> Word  G 
C_ Word  ( K `  G
) )
3130sselda 3465 . . . . . . . 8  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  w  e. Word  G )  ->  w  e. Word  ( K `  G )
)
32 gsumwsubmcl 16615 . . . . . . . 8  |-  ( ( ( K `  G
)  e.  (SubMnd `  M )  /\  w  e. Word  ( K `  G
) )  ->  ( M  gsumg  w )  e.  ( K `  G ) )
3326, 31, 32syl2anc 666 . . . . . . 7  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  w  e. Word  G )  ->  ( M  gsumg  w )  e.  ( K `  G ) )
3433, 17fmptd 6059 . . . . . 6  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( w  e. Word  G  |->  ( M  gsumg  w ) ) :Word 
G --> ( K `  G ) )
35 frn 5750 . . . . . 6  |-  ( ( w  e. Word  G  |->  ( M  gsumg  w ) ) :Word 
G --> ( K `  G )  ->  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  C_  ( K `  G ) )
3634, 35syl 17 . . . . 5  |-  ( ( M  e.  Mnd  /\  G  C_  B )  ->  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  C_  ( K `  G ) )
373, 23mrcssvd 15522 . . . . . 6  |-  ( M  e.  Mnd  ->  ( K `  G )  C_  B )
3837adantr 467 . . . . 5  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( K `  G
)  C_  B )
3936, 38sstrd 3475 . . . 4  |-  ( ( M  e.  Mnd  /\  G  C_  B )  ->  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  C_  B )
40 wrd0 12689 . . . . . 6  |-  (/)  e. Word  G
41 eqid 2423 . . . . . . . . 9  |-  ( 0g
`  M )  =  ( 0g `  M
)
4241gsum0 16514 . . . . . . . 8  |-  ( M 
gsumg  (/) )  =  ( 0g
`  M )
4342eqcomi 2436 . . . . . . 7  |-  ( 0g
`  M )  =  ( M  gsumg  (/) )
4443a1i 11 . . . . . 6  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( 0g `  M
)  =  ( M 
gsumg  (/) ) )
45 oveq2 6311 . . . . . . . 8  |-  ( w  =  (/)  ->  ( M 
gsumg  w )  =  ( M  gsumg  (/) ) )
4645eqeq2d 2437 . . . . . . 7  |-  ( w  =  (/)  ->  ( ( 0g `  M )  =  ( M  gsumg  w )  <-> 
( 0g `  M
)  =  ( M 
gsumg  (/) ) ) )
4746rspcev 3183 . . . . . 6  |-  ( (
(/)  e. Word  G  /\  ( 0g `  M )  =  ( M  gsumg  (/) ) )  ->  E. w  e. Word  G ( 0g `  M )  =  ( M  gsumg  w ) )
4840, 44, 47sylancr 668 . . . . 5  |-  ( ( M  e.  Mnd  /\  G  C_  B )  ->  E. w  e. Word  G ( 0g `  M )  =  ( M  gsumg  w ) )
49 fvex 5889 . . . . . 6  |-  ( 0g
`  M )  e. 
_V
5017elrnmpt 5098 . . . . . 6  |-  ( ( 0g `  M )  e.  _V  ->  (
( 0g `  M
)  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) )  <->  E. w  e. Word  G ( 0g `  M )  =  ( M  gsumg  w ) ) )
5149, 50ax-mp 5 . . . . 5  |-  ( ( 0g `  M )  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) )  <->  E. w  e. Word  G ( 0g `  M )  =  ( M  gsumg  w ) )
5248, 51sylibr 216 . . . 4  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( 0g `  M
)  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) ) )
53 ccatcl 12718 . . . . . . . . 9  |-  ( ( z  e. Word  G  /\  v  e. Word  G )  ->  ( z ++  v )  e. Word  G )
5453adantl 468 . . . . . . . 8  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  ( z ++  v )  e. Word  G
)
55 simpll 759 . . . . . . . . . 10  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  M  e.  Mnd )
56 sswrd 12677 . . . . . . . . . . . 12  |-  ( G 
C_  B  -> Word  G  C_ Word  B )
5756ad2antlr 732 . . . . . . . . . . 11  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  -> Word  G  C_ Word  B )
58 simprl 763 . . . . . . . . . . 11  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  z  e. Word  G )
5957, 58sseldd 3466 . . . . . . . . . 10  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  z  e. Word  B )
60 simprr 765 . . . . . . . . . . 11  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  v  e. Word  G )
6157, 60sseldd 3466 . . . . . . . . . 10  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  v  e. Word  B )
62 eqid 2423 . . . . . . . . . . 11  |-  ( +g  `  M )  =  ( +g  `  M )
631, 62gsumccat 16618 . . . . . . . . . 10  |-  ( ( M  e.  Mnd  /\  z  e. Word  B  /\  v  e. Word  B )  ->  ( M  gsumg  ( z ++  v ) )  =  ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) ) )
6455, 59, 61, 63syl3anc 1265 . . . . . . . . 9  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  ( M  gsumg  ( z ++  v ) )  =  ( ( M 
gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) ) )
6564eqcomd 2431 . . . . . . . 8  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  =  ( M  gsumg  ( z ++  v ) ) )
66 oveq2 6311 . . . . . . . . . 10  |-  ( w  =  ( z ++  v )  ->  ( M  gsumg  w )  =  ( M 
gsumg  ( z ++  v )
) )
6766eqeq2d 2437 . . . . . . . . 9  |-  ( w  =  ( z ++  v )  ->  ( (
( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  =  ( M  gsumg  w )  <->  ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  =  ( M  gsumg  ( z ++  v ) ) ) )
6867rspcev 3183 . . . . . . . 8  |-  ( ( ( z ++  v )  e. Word  G  /\  (
( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  =  ( M  gsumg  ( z ++  v ) ) )  ->  E. w  e. Word  G ( ( M 
gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  =  ( M  gsumg  w ) )
6954, 65, 68syl2anc 666 . . . . . . 7  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  E. w  e. Word  G ( ( M 
gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  =  ( M  gsumg  w ) )
70 ovex 6331 . . . . . . . 8  |-  ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
_V
7117elrnmpt 5098 . . . . . . . 8  |-  ( ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
_V  ->  ( ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  E. w  e. Word  G
( ( M  gsumg  z ) ( +g  `  M
) ( M  gsumg  v ) )  =  ( M 
gsumg  w ) ) )
7270, 71ax-mp 5 . . . . . . 7  |-  ( ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  E. w  e. Word  G
( ( M  gsumg  z ) ( +g  `  M
) ( M  gsumg  v ) )  =  ( M 
gsumg  w ) )
7369, 72sylibr 216 . . . . . 6  |-  ( ( ( M  e.  Mnd  /\  G  C_  B )  /\  ( z  e. Word  G  /\  v  e. Word  G ) )  ->  ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
7473ralrimivva 2847 . . . . 5  |-  ( ( M  e.  Mnd  /\  G  C_  B )  ->  A. z  e. Word  G A. v  e. Word  G (
( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
75 oveq2 6311 . . . . . . . . 9  |-  ( w  =  z  ->  ( M  gsumg  w )  =  ( M  gsumg  z ) )
7675cbvmptv 4514 . . . . . . . 8  |-  ( w  e. Word  G  |->  ( M 
gsumg  w ) )  =  ( z  e. Word  G  |->  ( M  gsumg  z ) )
7776rneqi 5078 . . . . . . 7  |-  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) )  =  ran  ( z  e. Word  G  |->  ( M  gsumg  z ) )
7877raleqi 3030 . . . . . 6  |-  ( A. x  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) A. y  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. x  e.  ran  ( z  e. Word  G  |->  ( M  gsumg  z ) ) A. y  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
79 oveq2 6311 . . . . . . . . . . 11  |-  ( w  =  v  ->  ( M  gsumg  w )  =  ( M  gsumg  v ) )
8079cbvmptv 4514 . . . . . . . . . 10  |-  ( w  e. Word  G  |->  ( M 
gsumg  w ) )  =  ( v  e. Word  G  |->  ( M  gsumg  v ) )
8180rneqi 5078 . . . . . . . . 9  |-  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) )  =  ran  ( v  e. Word  G  |->  ( M  gsumg  v ) )
8281raleqi 3030 . . . . . . . 8  |-  ( A. y  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. y  e.  ran  ( v  e. Word  G  |->  ( M  gsumg  v ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
83 eqid 2423 . . . . . . . . . 10  |-  ( v  e. Word  G  |->  ( M 
gsumg  v ) )  =  ( v  e. Word  G  |->  ( M  gsumg  v ) )
84 oveq2 6311 . . . . . . . . . . 11  |-  ( y  =  ( M  gsumg  v )  ->  ( x ( +g  `  M ) y )  =  ( x ( +g  `  M
) ( M  gsumg  v ) ) )
8584eleq1d 2492 . . . . . . . . . 10  |-  ( y  =  ( M  gsumg  v )  ->  ( ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  ( x ( +g  `  M ) ( M  gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) ) )
8683, 85ralrnmpt 6044 . . . . . . . . 9  |-  ( A. v  e. Word  G ( M  gsumg  v )  e.  _V  ->  ( A. y  e. 
ran  ( v  e. Word  G  |->  ( M  gsumg  v ) ) ( x ( +g  `  M ) y )  e.  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. v  e. Word  G ( x ( +g  `  M ) ( M  gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) ) )
87 ovex 6331 . . . . . . . . . 10  |-  ( M 
gsumg  v )  e.  _V
8887a1i 11 . . . . . . . . 9  |-  ( v  e. Word  G  ->  ( M  gsumg  v )  e.  _V )
8986, 88mprg 2789 . . . . . . . 8  |-  ( A. y  e.  ran  ( v  e. Word  G  |->  ( M 
gsumg  v ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. v  e. Word  G
( x ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
9082, 89bitri 253 . . . . . . 7  |-  ( A. y  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. v  e. Word  G
( x ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
9190ralbii 2857 . . . . . 6  |-  ( A. x  e.  ran  ( z  e. Word  G  |->  ( M 
gsumg  z ) ) A. y  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. x  e.  ran  ( z  e. Word  G  |->  ( M  gsumg  z ) ) A. v  e. Word  G (
x ( +g  `  M
) ( M  gsumg  v ) )  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) ) )
92 eqid 2423 . . . . . . . 8  |-  ( z  e. Word  G  |->  ( M 
gsumg  z ) )  =  ( z  e. Word  G  |->  ( M  gsumg  z ) )
93 oveq1 6310 . . . . . . . . . 10  |-  ( x  =  ( M  gsumg  z )  ->  ( x ( +g  `  M ) ( M  gsumg  v ) )  =  ( ( M  gsumg  z ) ( +g  `  M
) ( M  gsumg  v ) ) )
9493eleq1d 2492 . . . . . . . . 9  |-  ( x  =  ( M  gsumg  z )  ->  ( ( x ( +g  `  M
) ( M  gsumg  v ) )  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) )  <->  ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) ) )
9594ralbidv 2865 . . . . . . . 8  |-  ( x  =  ( M  gsumg  z )  ->  ( A. v  e. Word  G ( x ( +g  `  M ) ( M  gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. v  e. Word  G
( ( M  gsumg  z ) ( +g  `  M
) ( M  gsumg  v ) )  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) ) ) )
9692, 95ralrnmpt 6044 . . . . . . 7  |-  ( A. z  e. Word  G ( M  gsumg  z )  e.  _V  ->  ( A. x  e. 
ran  ( z  e. Word  G  |->  ( M  gsumg  z ) ) A. v  e. Word  G ( x ( +g  `  M ) ( M  gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. z  e. Word  G A. v  e. Word  G ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) ) )
97 ovex 6331 . . . . . . . 8  |-  ( M 
gsumg  z )  e.  _V
9897a1i 11 . . . . . . 7  |-  ( z  e. Word  G  ->  ( M  gsumg  z )  e.  _V )
9996, 98mprg 2789 . . . . . 6  |-  ( A. x  e.  ran  ( z  e. Word  G  |->  ( M 
gsumg  z ) ) A. v  e. Word  G (
x ( +g  `  M
) ( M  gsumg  v ) )  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. z  e. Word  G A. v  e. Word  G ( ( M 
gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
10078, 91, 993bitri 275 . . . . 5  |-  ( A. x  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) A. y  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  <->  A. z  e. Word  G A. v  e. Word  G ( ( M  gsumg  z ) ( +g  `  M ) ( M 
gsumg  v ) )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
10174, 100sylibr 216 . . . 4  |-  ( ( M  e.  Mnd  /\  G  C_  B )  ->  A. x  e.  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) A. y  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
1021, 41, 62issubm 16587 . . . . 5  |-  ( M  e.  Mnd  ->  ( ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  e.  (SubMnd `  M )  <->  ( ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  C_  B  /\  ( 0g `  M )  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) )  /\  A. x  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) ) A. y  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) ) ) )
103102adantr 467 . . . 4  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  e.  (SubMnd `  M )  <->  ( ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  C_  B  /\  ( 0g `  M )  e.  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  /\  A. x  e.  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) ) A. y  e.  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) ( x ( +g  `  M
) y )  e. 
ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) ) ) )
10439, 52, 101, 103mpbir3and 1189 . . 3  |-  ( ( M  e.  Mnd  /\  G  C_  B )  ->  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  e.  (SubMnd `  M )
)
10523mrcsscl 15519 . . 3  |-  ( ( (SubMnd `  M )  e.  (Moore `  B )  /\  G  C_  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) )  /\  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) )  e.  (SubMnd `  M )
)  ->  ( K `  G )  C_  ran  ( w  e. Word  G  |->  ( M  gsumg  w ) ) )
1064, 22, 104, 105syl3anc 1265 . 2  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( K `  G
)  C_  ran  ( w  e. Word  G  |->  ( M 
gsumg  w ) ) )
107106, 36eqssd 3482 1  |-  ( ( M  e.  Mnd  /\  G  C_  B )  -> 
( K `  G
)  =  ran  (
w  e. Word  G  |->  ( M  gsumg  w ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869   A.wral 2776   E.wrex 2777   _Vcvv 3082    C_ wss 3437   (/)c0 3762    |-> cmpt 4480   ran crn 4852   -->wf 5595   ` cfv 5599  (class class class)co 6303  Word cword 12654   ++ cconcat 12656   <"cs1 12657   Basecbs 15114   +g cplusg 15183   0gc0g 15331    gsumg cgsu 15332  Moorecmre 15481  mrClscmrc 15482   Mndcmnd 16528  SubMndcsubmnd 16574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-iin 4300  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-1st 6805  df-2nd 6806  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-oadd 7192  df-er 7369  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-card 8376  df-cda 8600  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-nn 10612  df-2 10670  df-n0 10872  df-z 10940  df-uz 11162  df-fz 11787  df-fzo 11918  df-seq 12215  df-hash 12517  df-word 12662  df-concat 12664  df-s1 12665  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-0g 15333  df-gsum 15334  df-mre 15485  df-mrc 15486  df-acs 15488  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-submnd 16576
This theorem is referenced by:  psgneldm2  17138  psgnfitr  17151
  Copyright terms: Public domain W3C validator