MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwrev Structured version   Unicode version

Theorem gsumwrev 17022
Description: A sum in an opposite monoid is the regular sum of a reversed word. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Proof shortened by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
gsumwrev.b  |-  B  =  ( Base `  M
)
gsumwrev.o  |-  O  =  (oppg
`  M )
Assertion
Ref Expression
gsumwrev  |-  ( ( M  e.  Mnd  /\  W  e. Word  B )  ->  ( O  gsumg  W )  =  ( M  gsumg  (reverse `  W )
) )

Proof of Theorem gsumwrev
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6319 . . . . 5  |-  ( x  =  (/)  ->  ( O 
gsumg  x )  =  ( O  gsumg  (/) ) )
2 fveq2 5887 . . . . . . 7  |-  ( x  =  (/)  ->  (reverse `  x
)  =  (reverse `  (/) ) )
3 rev0 12877 . . . . . . 7  |-  (reverse `  (/) )  =  (/)
42, 3syl6eq 2480 . . . . . 6  |-  ( x  =  (/)  ->  (reverse `  x
)  =  (/) )
54oveq2d 6327 . . . . 5  |-  ( x  =  (/)  ->  ( M 
gsumg  (reverse `  x ) )  =  ( M  gsumg  (/) ) )
61, 5eqeq12d 2445 . . . 4  |-  ( x  =  (/)  ->  ( ( O  gsumg  x )  =  ( M  gsumg  (reverse `  x )
)  <->  ( O  gsumg  (/) )  =  ( M  gsumg  (/) ) ) )
76imbi2d 318 . . 3  |-  ( x  =  (/)  ->  ( ( M  e.  Mnd  ->  ( O  gsumg  x )  =  ( M  gsumg  (reverse `  x )
) )  <->  ( M  e.  Mnd  ->  ( O  gsumg  (/) )  =  ( M 
gsumg  (/) ) ) ) )
8 oveq2 6319 . . . . 5  |-  ( x  =  y  ->  ( O  gsumg  x )  =  ( O  gsumg  y ) )
9 fveq2 5887 . . . . . 6  |-  ( x  =  y  ->  (reverse `  x )  =  (reverse `  y ) )
109oveq2d 6327 . . . . 5  |-  ( x  =  y  ->  ( M  gsumg  (reverse `  x )
)  =  ( M 
gsumg  (reverse `  y ) ) )
118, 10eqeq12d 2445 . . . 4  |-  ( x  =  y  ->  (
( O  gsumg  x )  =  ( M  gsumg  (reverse `  x )
)  <->  ( O  gsumg  y )  =  ( M  gsumg  (reverse `  y
) ) ) )
1211imbi2d 318 . . 3  |-  ( x  =  y  ->  (
( M  e.  Mnd  ->  ( O  gsumg  x )  =  ( M  gsumg  (reverse `  x )
) )  <->  ( M  e.  Mnd  ->  ( O  gsumg  y )  =  ( M 
gsumg  (reverse `  y ) ) ) ) )
13 oveq2 6319 . . . . 5  |-  ( x  =  ( y ++  <" z "> )  ->  ( O  gsumg  x )  =  ( O  gsumg  ( y ++  <" z "> ) ) )
14 fveq2 5887 . . . . . 6  |-  ( x  =  ( y ++  <" z "> )  ->  (reverse `  x )  =  (reverse `  ( y ++  <" z "> ) ) )
1514oveq2d 6327 . . . . 5  |-  ( x  =  ( y ++  <" z "> )  ->  ( M  gsumg  (reverse `  x )
)  =  ( M 
gsumg  (reverse `  ( y ++  <" z "> )
) ) )
1613, 15eqeq12d 2445 . . . 4  |-  ( x  =  ( y ++  <" z "> )  ->  ( ( O  gsumg  x )  =  ( M  gsumg  (reverse `  x
) )  <->  ( O  gsumg  ( y ++  <" z "> ) )  =  ( M  gsumg  (reverse `  ( y ++  <" z "> ) ) ) ) )
1716imbi2d 318 . . 3  |-  ( x  =  ( y ++  <" z "> )  ->  ( ( M  e. 
Mnd  ->  ( O  gsumg  x )  =  ( M  gsumg  (reverse `  x
) ) )  <->  ( M  e.  Mnd  ->  ( O  gsumg  ( y ++  <" z "> ) )  =  ( M  gsumg  (reverse `  ( y ++  <" z "> ) ) ) ) ) )
18 oveq2 6319 . . . . 5  |-  ( x  =  W  ->  ( O  gsumg  x )  =  ( O  gsumg  W ) )
19 fveq2 5887 . . . . . 6  |-  ( x  =  W  ->  (reverse `  x )  =  (reverse `  W ) )
2019oveq2d 6327 . . . . 5  |-  ( x  =  W  ->  ( M  gsumg  (reverse `  x )
)  =  ( M 
gsumg  (reverse `  W ) ) )
2118, 20eqeq12d 2445 . . . 4  |-  ( x  =  W  ->  (
( O  gsumg  x )  =  ( M  gsumg  (reverse `  x )
)  <->  ( O  gsumg  W )  =  ( M  gsumg  (reverse `  W
) ) ) )
2221imbi2d 318 . . 3  |-  ( x  =  W  ->  (
( M  e.  Mnd  ->  ( O  gsumg  x )  =  ( M  gsumg  (reverse `  x )
) )  <->  ( M  e.  Mnd  ->  ( O  gsumg  W )  =  ( M 
gsumg  (reverse `  W ) ) ) ) )
23 gsumwrev.o . . . . . . 7  |-  O  =  (oppg
`  M )
24 eqid 2423 . . . . . . 7  |-  ( 0g
`  M )  =  ( 0g `  M
)
2523, 24oppgid 17012 . . . . . 6  |-  ( 0g
`  M )  =  ( 0g `  O
)
2625gsum0 16526 . . . . 5  |-  ( O 
gsumg  (/) )  =  ( 0g
`  M )
2724gsum0 16526 . . . . 5  |-  ( M 
gsumg  (/) )  =  ( 0g
`  M )
2826, 27eqtr4i 2455 . . . 4  |-  ( O 
gsumg  (/) )  =  ( M 
gsumg  (/) )
2928a1i 11 . . 3  |-  ( M  e.  Mnd  ->  ( O  gsumg  (/) )  =  ( M  gsumg  (/) ) )
30 oveq2 6319 . . . . . 6  |-  ( ( O  gsumg  y )  =  ( M  gsumg  (reverse `  y )
)  ->  ( z
( +g  `  M ) ( O  gsumg  y ) )  =  ( z ( +g  `  M ) ( M 
gsumg  (reverse `  y ) ) ) )
3123oppgmnd 17010 . . . . . . . . . 10  |-  ( M  e.  Mnd  ->  O  e.  Mnd )
3231adantr 467 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  O  e.  Mnd )
33 simprl 763 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  y  e. Word  B )
34 simprr 765 . . . . . . . . . 10  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  z  e.  B )
3534s1cld 12752 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  <" z ">  e. Word  B )
36 gsumwrev.b . . . . . . . . . . 11  |-  B  =  ( Base `  M
)
3723, 36oppgbas 17007 . . . . . . . . . 10  |-  B  =  ( Base `  O
)
38 eqid 2423 . . . . . . . . . 10  |-  ( +g  `  O )  =  ( +g  `  O )
3937, 38gsumccat 16630 . . . . . . . . 9  |-  ( ( O  e.  Mnd  /\  y  e. Word  B  /\  <" z ">  e. Word  B )  ->  ( O  gsumg  ( y ++  <" z "> ) )  =  ( ( O  gsumg  y ) ( +g  `  O
) ( O  gsumg  <" z "> ) ) )
4032, 33, 35, 39syl3anc 1265 . . . . . . . 8  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  ( O  gsumg  ( y ++  <" z "> ) )  =  ( ( O  gsumg  y ) ( +g  `  O
) ( O  gsumg  <" z "> ) ) )
4137gsumws1 16628 . . . . . . . . . . 11  |-  ( z  e.  B  ->  ( O  gsumg 
<" z "> )  =  z )
4241ad2antll 734 . . . . . . . . . 10  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  ( O  gsumg 
<" z "> )  =  z )
4342oveq2d 6327 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  (
( O  gsumg  y ) ( +g  `  O ) ( O 
gsumg  <" z "> ) )  =  ( ( O  gsumg  y ) ( +g  `  O ) z ) )
44 eqid 2423 . . . . . . . . . 10  |-  ( +g  `  M )  =  ( +g  `  M )
4544, 23, 38oppgplus 17005 . . . . . . . . 9  |-  ( ( O  gsumg  y ) ( +g  `  O ) z )  =  ( z ( +g  `  M ) ( O  gsumg  y ) )
4643, 45syl6eq 2480 . . . . . . . 8  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  (
( O  gsumg  y ) ( +g  `  O ) ( O 
gsumg  <" z "> ) )  =  ( z ( +g  `  M
) ( O  gsumg  y ) ) )
4740, 46eqtrd 2464 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  ( O  gsumg  ( y ++  <" z "> ) )  =  ( z ( +g  `  M ) ( O 
gsumg  y ) ) )
48 revccat 12879 . . . . . . . . . . 11  |-  ( ( y  e. Word  B  /\  <" z ">  e. Word  B )  ->  (reverse `  ( y ++  <" z "> ) )  =  ( (reverse `  <" z "> ) ++  (reverse `  y ) ) )
4933, 35, 48syl2anc 666 . . . . . . . . . 10  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  (reverse `  ( y ++  <" z "> ) )  =  ( (reverse `  <" z "> ) ++  (reverse `  y ) ) )
50 revs1 12878 . . . . . . . . . . 11  |-  (reverse `  <" z "> )  =  <" z ">
5150oveq1i 6321 . . . . . . . . . 10  |-  ( (reverse `  <" z "> ) ++  (reverse `  y
) )  =  (
<" z "> ++  (reverse `  y ) )
5249, 51syl6eq 2480 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  (reverse `  ( y ++  <" z "> ) )  =  ( <" z "> ++  (reverse `  y )
) )
5352oveq2d 6327 . . . . . . . 8  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  ( M  gsumg  (reverse `  ( y ++  <" z "> ) ) )  =  ( M  gsumg  ( <" z "> ++  (reverse `  y )
) ) )
54 simpl 459 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  M  e.  Mnd )
55 revcl 12874 . . . . . . . . . 10  |-  ( y  e. Word  B  ->  (reverse `  y )  e. Word  B
)
5655ad2antrl 733 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  (reverse `  y )  e. Word  B
)
5736, 44gsumccat 16630 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  <" z ">  e. Word  B  /\  (reverse `  y
)  e. Word  B )  ->  ( M  gsumg  ( <" z "> ++  (reverse `  y )
) )  =  ( ( M  gsumg 
<" z "> ) ( +g  `  M
) ( M  gsumg  (reverse `  y
) ) ) )
5854, 35, 56, 57syl3anc 1265 . . . . . . . 8  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  ( M  gsumg  ( <" z "> ++  (reverse `  y )
) )  =  ( ( M  gsumg 
<" z "> ) ( +g  `  M
) ( M  gsumg  (reverse `  y
) ) ) )
5936gsumws1 16628 . . . . . . . . . 10  |-  ( z  e.  B  ->  ( M  gsumg 
<" z "> )  =  z )
6059ad2antll 734 . . . . . . . . 9  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  ( M  gsumg 
<" z "> )  =  z )
6160oveq1d 6326 . . . . . . . 8  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  (
( M  gsumg 
<" z "> ) ( +g  `  M
) ( M  gsumg  (reverse `  y
) ) )  =  ( z ( +g  `  M ) ( M 
gsumg  (reverse `  y ) ) ) )
6253, 58, 613eqtrd 2468 . . . . . . 7  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  ( M  gsumg  (reverse `  ( y ++  <" z "> ) ) )  =  ( z ( +g  `  M ) ( M 
gsumg  (reverse `  y ) ) ) )
6347, 62eqeq12d 2445 . . . . . 6  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  (
( O  gsumg  ( y ++  <" z "> ) )  =  ( M  gsumg  (reverse `  ( y ++  <" z "> ) ) )  <->  ( z
( +g  `  M ) ( O  gsumg  y ) )  =  ( z ( +g  `  M ) ( M 
gsumg  (reverse `  y ) ) ) ) )
6430, 63syl5ibr 225 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( y  e. Word  B  /\  z  e.  B
) )  ->  (
( O  gsumg  y )  =  ( M  gsumg  (reverse `  y )
)  ->  ( O  gsumg  ( y ++  <" z "> ) )  =  ( M  gsumg  (reverse `  ( y ++  <" z "> ) ) ) ) )
6564expcom 437 . . . 4  |-  ( ( y  e. Word  B  /\  z  e.  B )  ->  ( M  e.  Mnd  ->  ( ( O  gsumg  y )  =  ( M  gsumg  (reverse `  y
) )  ->  ( O  gsumg  ( y ++  <" z "> ) )  =  ( M  gsumg  (reverse `  ( y ++  <" z "> ) ) ) ) ) )
6665a2d 30 . . 3  |-  ( ( y  e. Word  B  /\  z  e.  B )  ->  ( ( M  e. 
Mnd  ->  ( O  gsumg  y )  =  ( M  gsumg  (reverse `  y
) ) )  -> 
( M  e.  Mnd  ->  ( O  gsumg  ( y ++  <" z "> ) )  =  ( M  gsumg  (reverse `  ( y ++  <" z "> ) ) ) ) ) )
677, 12, 17, 22, 29, 66wrdind 12841 . 2  |-  ( W  e. Word  B  ->  ( M  e.  Mnd  ->  ( O  gsumg  W )  =  ( M  gsumg  (reverse `  W )
) ) )
6867impcom 432 1  |-  ( ( M  e.  Mnd  /\  W  e. Word  B )  ->  ( O  gsumg  W )  =  ( M  gsumg  (reverse `  W )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1438    e. wcel 1873   (/)c0 3767   ` cfv 5607  (class class class)co 6311  Word cword 12666   ++ cconcat 12668   <"cs1 12669  reversecreverse 12672   Basecbs 15126   +g cplusg 15195   0gc0g 15343    gsumg cgsu 15344   Mndcmnd 16540  oppgcoppg 17001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1664  ax-4 1677  ax-5 1753  ax-6 1799  ax-7 1844  ax-8 1875  ax-9 1877  ax-10 1892  ax-11 1897  ax-12 1910  ax-13 2058  ax-ext 2402  ax-rep 4542  ax-sep 4552  ax-nul 4561  ax-pow 4608  ax-pr 4666  ax-un 6603  ax-cnex 9608  ax-resscn 9609  ax-1cn 9610  ax-icn 9611  ax-addcl 9612  ax-addrcl 9613  ax-mulcl 9614  ax-mulrcl 9615  ax-mulcom 9616  ax-addass 9617  ax-mulass 9618  ax-distr 9619  ax-i2m1 9620  ax-1ne0 9621  ax-1rid 9622  ax-rnegex 9623  ax-rrecex 9624  ax-cnre 9625  ax-pre-lttri 9626  ax-pre-lttrn 9627  ax-pre-ltadd 9628  ax-pre-mulgt0 9629
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1659  df-nf 1663  df-sb 1792  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3087  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3918  df-pw 3989  df-sn 4005  df-pr 4007  df-tp 4009  df-op 4011  df-uni 4226  df-int 4262  df-iun 4307  df-br 4430  df-opab 4489  df-mpt 4490  df-tr 4525  df-eprel 4770  df-id 4774  df-po 4780  df-so 4781  df-fr 4818  df-we 4820  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-pred 5405  df-ord 5451  df-on 5452  df-lim 5453  df-suc 5454  df-iota 5571  df-fun 5609  df-fn 5610  df-f 5611  df-f1 5612  df-fo 5613  df-f1o 5614  df-fv 5615  df-riota 6273  df-ov 6314  df-oprab 6315  df-mpt2 6316  df-om 6713  df-1st 6813  df-2nd 6814  df-tpos 6990  df-wrecs 7045  df-recs 7107  df-rdg 7145  df-1o 7199  df-oadd 7203  df-er 7380  df-en 7587  df-dom 7588  df-sdom 7589  df-fin 7590  df-card 8387  df-cda 8611  df-pnf 9690  df-mnf 9691  df-xr 9692  df-ltxr 9693  df-le 9694  df-sub 9875  df-neg 9876  df-nn 10623  df-2 10681  df-n0 10883  df-z 10951  df-uz 11173  df-fz 11798  df-fzo 11929  df-seq 12226  df-hash 12528  df-word 12674  df-lsw 12675  df-concat 12676  df-s1 12677  df-substr 12678  df-reverse 12680  df-ndx 15129  df-slot 15130  df-base 15131  df-sets 15132  df-ress 15133  df-plusg 15208  df-0g 15345  df-gsum 15346  df-mgm 16493  df-sgrp 16532  df-mnd 16542  df-submnd 16588  df-oppg 17002
This theorem is referenced by:  symgtrinv  17118
  Copyright terms: Public domain W3C validator