Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumvsca1 Structured version   Unicode version

Theorem gsumvsca1 27464
Description: Scalar product of a finite group sum for a left module over a semiring (Contributed by Thierry Arnoux, 16-Mar-2018.)
Hypotheses
Ref Expression
gsumvsca.b  |-  B  =  ( Base `  W
)
gsumvsca.g  |-  G  =  (Scalar `  W )
gsumvsca.z  |-  .0.  =  ( 0g `  W )
gsumvsca.t  |-  .x.  =  ( .s `  W )
gsumvsca.p  |-  .+  =  ( +g  `  W )
gsumvsca.k  |-  ( ph  ->  K  C_  ( Base `  G ) )
gsumvsca.a  |-  ( ph  ->  A  e.  Fin )
gsumvsca.w  |-  ( ph  ->  W  e. SLMod )
gsumvsca1.n  |-  ( ph  ->  P  e.  K )
gsumvsca1.c  |-  ( (
ph  /\  k  e.  A )  ->  Q  e.  B )
Assertion
Ref Expression
gsumvsca1  |-  ( ph  ->  ( W  gsumg  ( k  e.  A  |->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  A  |->  Q ) ) ) )
Distinct variable groups:    .x. , k    A, k    k, W    ph, k    B, k    P, k
Allowed substitution hints:    .+ ( k)    Q( k)    G( k)    K( k)    .0. ( k)

Proof of Theorem gsumvsca1
Dummy variables  e 
a  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumvsca.a . 2  |-  ( ph  ->  A  e.  Fin )
2 ssid 3523 . . 3  |-  A  C_  A
3 sseq1 3525 . . . . . . 7  |-  ( a  =  (/)  ->  ( a 
C_  A  <->  (/)  C_  A
) )
43anbi2d 703 . . . . . 6  |-  ( a  =  (/)  ->  ( (
ph  /\  a  C_  A )  <->  ( ph  /\  (/)  C_  A ) ) )
5 mpteq1 4527 . . . . . . . 8  |-  ( a  =  (/)  ->  ( k  e.  a  |->  ( P 
.x.  Q ) )  =  ( k  e.  (/)  |->  ( P  .x.  Q ) ) )
65oveq2d 6300 . . . . . . 7  |-  ( a  =  (/)  ->  ( W 
gsumg  ( k  e.  a 
|->  ( P  .x.  Q
) ) )  =  ( W  gsumg  ( k  e.  (/)  |->  ( P  .x.  Q ) ) ) )
7 mpteq1 4527 . . . . . . . . 9  |-  ( a  =  (/)  ->  ( k  e.  a  |->  Q )  =  ( k  e.  (/)  |->  Q ) )
87oveq2d 6300 . . . . . . . 8  |-  ( a  =  (/)  ->  ( W 
gsumg  ( k  e.  a 
|->  Q ) )  =  ( W  gsumg  ( k  e.  (/)  |->  Q ) ) )
98oveq2d 6300 . . . . . . 7  |-  ( a  =  (/)  ->  ( P 
.x.  ( W  gsumg  ( k  e.  a  |->  Q ) ) )  =  ( P  .x.  ( W 
gsumg  ( k  e.  (/)  |->  Q ) ) ) )
106, 9eqeq12d 2489 . . . . . 6  |-  ( a  =  (/)  ->  ( ( W  gsumg  ( k  e.  a 
|->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  a 
|->  Q ) ) )  <-> 
( W  gsumg  ( k  e.  (/)  |->  ( P  .x.  Q ) ) )  =  ( P  .x.  ( W 
gsumg  ( k  e.  (/)  |->  Q ) ) ) ) )
114, 10imbi12d 320 . . . . 5  |-  ( a  =  (/)  ->  ( ( ( ph  /\  a  C_  A )  ->  ( W  gsumg  ( k  e.  a 
|->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  a 
|->  Q ) ) ) )  <->  ( ( ph  /\  (/)  C_  A )  -> 
( W  gsumg  ( k  e.  (/)  |->  ( P  .x.  Q ) ) )  =  ( P  .x.  ( W 
gsumg  ( k  e.  (/)  |->  Q ) ) ) ) ) )
12 sseq1 3525 . . . . . . 7  |-  ( a  =  e  ->  (
a  C_  A  <->  e  C_  A ) )
1312anbi2d 703 . . . . . 6  |-  ( a  =  e  ->  (
( ph  /\  a  C_  A )  <->  ( ph  /\  e  C_  A )
) )
14 mpteq1 4527 . . . . . . . 8  |-  ( a  =  e  ->  (
k  e.  a  |->  ( P  .x.  Q ) )  =  ( k  e.  e  |->  ( P 
.x.  Q ) ) )
1514oveq2d 6300 . . . . . . 7  |-  ( a  =  e  ->  ( W  gsumg  ( k  e.  a 
|->  ( P  .x.  Q
) ) )  =  ( W  gsumg  ( k  e.  e 
|->  ( P  .x.  Q
) ) ) )
16 mpteq1 4527 . . . . . . . . 9  |-  ( a  =  e  ->  (
k  e.  a  |->  Q )  =  ( k  e.  e  |->  Q ) )
1716oveq2d 6300 . . . . . . . 8  |-  ( a  =  e  ->  ( W  gsumg  ( k  e.  a 
|->  Q ) )  =  ( W  gsumg  ( k  e.  e 
|->  Q ) ) )
1817oveq2d 6300 . . . . . . 7  |-  ( a  =  e  ->  ( P  .x.  ( W  gsumg  ( k  e.  a  |->  Q ) ) )  =  ( P  .x.  ( W 
gsumg  ( k  e.  e 
|->  Q ) ) ) )
1915, 18eqeq12d 2489 . . . . . 6  |-  ( a  =  e  ->  (
( W  gsumg  ( k  e.  a 
|->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  a 
|->  Q ) ) )  <-> 
( W  gsumg  ( k  e.  e 
|->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  e 
|->  Q ) ) ) ) )
2013, 19imbi12d 320 . . . . 5  |-  ( a  =  e  ->  (
( ( ph  /\  a  C_  A )  -> 
( W  gsumg  ( k  e.  a 
|->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  a 
|->  Q ) ) ) )  <->  ( ( ph  /\  e  C_  A )  ->  ( W  gsumg  ( k  e.  e 
|->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  e 
|->  Q ) ) ) ) ) )
21 sseq1 3525 . . . . . . 7  |-  ( a  =  ( e  u. 
{ z } )  ->  ( a  C_  A 
<->  ( e  u.  {
z } )  C_  A ) )
2221anbi2d 703 . . . . . 6  |-  ( a  =  ( e  u. 
{ z } )  ->  ( ( ph  /\  a  C_  A )  <->  (
ph  /\  ( e  u.  { z } ) 
C_  A ) ) )
23 mpteq1 4527 . . . . . . . 8  |-  ( a  =  ( e  u. 
{ z } )  ->  ( k  e.  a  |->  ( P  .x.  Q ) )  =  ( k  e.  ( e  u.  { z } )  |->  ( P 
.x.  Q ) ) )
2423oveq2d 6300 . . . . . . 7  |-  ( a  =  ( e  u. 
{ z } )  ->  ( W  gsumg  ( k  e.  a  |->  ( P 
.x.  Q ) ) )  =  ( W 
gsumg  ( k  e.  ( e  u.  { z } )  |->  ( P 
.x.  Q ) ) ) )
25 mpteq1 4527 . . . . . . . . 9  |-  ( a  =  ( e  u. 
{ z } )  ->  ( k  e.  a  |->  Q )  =  ( k  e.  ( e  u.  { z } )  |->  Q ) )
2625oveq2d 6300 . . . . . . . 8  |-  ( a  =  ( e  u. 
{ z } )  ->  ( W  gsumg  ( k  e.  a  |->  Q ) )  =  ( W 
gsumg  ( k  e.  ( e  u.  { z } )  |->  Q ) ) )
2726oveq2d 6300 . . . . . . 7  |-  ( a  =  ( e  u. 
{ z } )  ->  ( P  .x.  ( W  gsumg  ( k  e.  a 
|->  Q ) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  ( e  u.  { z } )  |->  Q ) ) ) )
2824, 27eqeq12d 2489 . . . . . 6  |-  ( a  =  ( e  u. 
{ z } )  ->  ( ( W 
gsumg  ( k  e.  a 
|->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  a 
|->  Q ) ) )  <-> 
( W  gsumg  ( k  e.  ( e  u.  { z } )  |->  ( P 
.x.  Q ) ) )  =  ( P 
.x.  ( W  gsumg  ( k  e.  ( e  u. 
{ z } ) 
|->  Q ) ) ) ) )
2922, 28imbi12d 320 . . . . 5  |-  ( a  =  ( e  u. 
{ z } )  ->  ( ( (
ph  /\  a  C_  A )  ->  ( W  gsumg  ( k  e.  a 
|->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  a 
|->  Q ) ) ) )  <->  ( ( ph  /\  ( e  u.  {
z } )  C_  A )  ->  ( W  gsumg  ( k  e.  ( e  u.  { z } )  |->  ( P 
.x.  Q ) ) )  =  ( P 
.x.  ( W  gsumg  ( k  e.  ( e  u. 
{ z } ) 
|->  Q ) ) ) ) ) )
30 sseq1 3525 . . . . . . 7  |-  ( a  =  A  ->  (
a  C_  A  <->  A  C_  A
) )
3130anbi2d 703 . . . . . 6  |-  ( a  =  A  ->  (
( ph  /\  a  C_  A )  <->  ( ph  /\  A  C_  A )
) )
32 mpteq1 4527 . . . . . . . 8  |-  ( a  =  A  ->  (
k  e.  a  |->  ( P  .x.  Q ) )  =  ( k  e.  A  |->  ( P 
.x.  Q ) ) )
3332oveq2d 6300 . . . . . . 7  |-  ( a  =  A  ->  ( W  gsumg  ( k  e.  a 
|->  ( P  .x.  Q
) ) )  =  ( W  gsumg  ( k  e.  A  |->  ( P  .x.  Q
) ) ) )
34 mpteq1 4527 . . . . . . . . 9  |-  ( a  =  A  ->  (
k  e.  a  |->  Q )  =  ( k  e.  A  |->  Q ) )
3534oveq2d 6300 . . . . . . . 8  |-  ( a  =  A  ->  ( W  gsumg  ( k  e.  a 
|->  Q ) )  =  ( W  gsumg  ( k  e.  A  |->  Q ) ) )
3635oveq2d 6300 . . . . . . 7  |-  ( a  =  A  ->  ( P  .x.  ( W  gsumg  ( k  e.  a  |->  Q ) ) )  =  ( P  .x.  ( W 
gsumg  ( k  e.  A  |->  Q ) ) ) )
3733, 36eqeq12d 2489 . . . . . 6  |-  ( a  =  A  ->  (
( W  gsumg  ( k  e.  a 
|->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  a 
|->  Q ) ) )  <-> 
( W  gsumg  ( k  e.  A  |->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  A  |->  Q ) ) ) ) )
3831, 37imbi12d 320 . . . . 5  |-  ( a  =  A  ->  (
( ( ph  /\  a  C_  A )  -> 
( W  gsumg  ( k  e.  a 
|->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  a 
|->  Q ) ) ) )  <->  ( ( ph  /\  A  C_  A )  ->  ( W  gsumg  ( k  e.  A  |->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  A  |->  Q ) ) ) ) ) )
39 gsumvsca.w . . . . . . . . 9  |-  ( ph  ->  W  e. SLMod )
40 gsumvsca.k . . . . . . . . . 10  |-  ( ph  ->  K  C_  ( Base `  G ) )
41 gsumvsca1.n . . . . . . . . . 10  |-  ( ph  ->  P  e.  K )
4240, 41sseldd 3505 . . . . . . . . 9  |-  ( ph  ->  P  e.  ( Base `  G ) )
43 gsumvsca.g . . . . . . . . . 10  |-  G  =  (Scalar `  W )
44 gsumvsca.t . . . . . . . . . 10  |-  .x.  =  ( .s `  W )
45 eqid 2467 . . . . . . . . . 10  |-  ( Base `  G )  =  (
Base `  G )
46 gsumvsca.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  W )
4743, 44, 45, 46slmdvs0 27458 . . . . . . . . 9  |-  ( ( W  e. SLMod  /\  P  e.  ( Base `  G
) )  ->  ( P  .x.  .0.  )  =  .0.  )
4839, 42, 47syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( P  .x.  .0.  )  =  .0.  )
4948eqcomd 2475 . . . . . . 7  |-  ( ph  ->  .0.  =  ( P 
.x.  .0.  ) )
50 mpt0 5708 . . . . . . . . 9  |-  ( k  e.  (/)  |->  ( P  .x.  Q ) )  =  (/)
5150oveq2i 6295 . . . . . . . 8  |-  ( W 
gsumg  ( k  e.  (/)  |->  ( P  .x.  Q ) ) )  =  ( W  gsumg  (/) )
5246gsum0 15832 . . . . . . . 8  |-  ( W 
gsumg  (/) )  =  .0.
5351, 52eqtri 2496 . . . . . . 7  |-  ( W 
gsumg  ( k  e.  (/)  |->  ( P  .x.  Q ) ) )  =  .0.
54 mpt0 5708 . . . . . . . . . 10  |-  ( k  e.  (/)  |->  Q )  =  (/)
5554oveq2i 6295 . . . . . . . . 9  |-  ( W 
gsumg  ( k  e.  (/)  |->  Q ) )  =  ( W  gsumg  (/) )
5655, 52eqtri 2496 . . . . . . . 8  |-  ( W 
gsumg  ( k  e.  (/)  |->  Q ) )  =  .0.
5756oveq2i 6295 . . . . . . 7  |-  ( P 
.x.  ( W  gsumg  ( k  e.  (/)  |->  Q ) ) )  =  ( P 
.x.  .0.  )
5849, 53, 573eqtr4g 2533 . . . . . 6  |-  ( ph  ->  ( W  gsumg  ( k  e.  (/)  |->  ( P  .x.  Q ) ) )  =  ( P  .x.  ( W 
gsumg  ( k  e.  (/)  |->  Q ) ) ) )
5958adantr 465 . . . . 5  |-  ( (
ph  /\  (/)  C_  A
)  ->  ( W  gsumg  ( k  e.  (/)  |->  ( P 
.x.  Q ) ) )  =  ( P 
.x.  ( W  gsumg  ( k  e.  (/)  |->  Q ) ) ) )
60 ssun1 3667 . . . . . . . . 9  |-  e  C_  ( e  u.  {
z } )
61 sstr2 3511 . . . . . . . . 9  |-  ( e 
C_  ( e  u. 
{ z } )  ->  ( ( e  u.  { z } )  C_  A  ->  e 
C_  A ) )
6260, 61ax-mp 5 . . . . . . . 8  |-  ( ( e  u.  { z } )  C_  A  ->  e  C_  A )
6362anim2i 569 . . . . . . 7  |-  ( (
ph  /\  ( e  u.  { z } ) 
C_  A )  -> 
( ph  /\  e  C_  A ) )
6463imim1i 58 . . . . . 6  |-  ( ( ( ph  /\  e  C_  A )  ->  ( W  gsumg  ( k  e.  e 
|->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  e 
|->  Q ) ) ) )  ->  ( ( ph  /\  ( e  u. 
{ z } ) 
C_  A )  -> 
( W  gsumg  ( k  e.  e 
|->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  e 
|->  Q ) ) ) ) )
6539ad2antrl 727 . . . . . . . . . . 11  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  ->  W  e. SLMod )
6642ad2antrl 727 . . . . . . . . . . 11  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  ->  P  e.  ( Base `  G ) )
67 gsumvsca.b . . . . . . . . . . . 12  |-  B  =  ( Base `  W
)
68 slmdcmn 27438 . . . . . . . . . . . . 13  |-  ( W  e. SLMod  ->  W  e. CMnd )
6965, 68syl 16 . . . . . . . . . . . 12  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  ->  W  e. CMnd )
70 vex 3116 . . . . . . . . . . . . 13  |-  e  e. 
_V
7170a1i 11 . . . . . . . . . . . 12  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  -> 
e  e.  _V )
72 simplrl 759 . . . . . . . . . . . . . 14  |-  ( ( ( ( e  e. 
Fin  /\  -.  z  e.  e )  /\  ( ph  /\  ( e  u. 
{ z } ) 
C_  A ) )  /\  k  e.  e )  ->  ph )
73 simprr 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  -> 
( e  u.  {
z } )  C_  A )
7473unssad 3681 . . . . . . . . . . . . . . 15  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  -> 
e  C_  A )
7574sselda 3504 . . . . . . . . . . . . . 14  |-  ( ( ( ( e  e. 
Fin  /\  -.  z  e.  e )  /\  ( ph  /\  ( e  u. 
{ z } ) 
C_  A ) )  /\  k  e.  e )  ->  k  e.  A )
76 gsumvsca1.c . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  Q  e.  B )
7772, 75, 76syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( e  e. 
Fin  /\  -.  z  e.  e )  /\  ( ph  /\  ( e  u. 
{ z } ) 
C_  A ) )  /\  k  e.  e )  ->  Q  e.  B )
78 eqid 2467 . . . . . . . . . . . . 13  |-  ( k  e.  e  |->  Q )  =  ( k  e.  e  |->  Q )
7977, 78fmptd 6045 . . . . . . . . . . . 12  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  -> 
( k  e.  e 
|->  Q ) : e --> B )
80 simpll 753 . . . . . . . . . . . . 13  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  -> 
e  e.  Fin )
81 fvex 5876 . . . . . . . . . . . . . . 15  |-  ( 0g
`  W )  e. 
_V
8246, 81eqeltri 2551 . . . . . . . . . . . . . 14  |-  .0.  e.  _V
8382a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  ->  .0.  e.  _V )
8478, 80, 77, 83fsuppmptdm 7840 . . . . . . . . . . . 12  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  -> 
( k  e.  e 
|->  Q ) finSupp  .0.  )
8567, 46, 69, 71, 79, 84gsumcl 16726 . . . . . . . . . . 11  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  -> 
( W  gsumg  ( k  e.  e 
|->  Q ) )  e.  B )
8673unssbd 3682 . . . . . . . . . . . . 13  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  ->  { z }  C_  A )
87 vex 3116 . . . . . . . . . . . . . 14  |-  z  e. 
_V
8887snss 4151 . . . . . . . . . . . . 13  |-  ( z  e.  A  <->  { z }  C_  A )
8986, 88sylibr 212 . . . . . . . . . . . 12  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  -> 
z  e.  A )
9076ralrimiva 2878 . . . . . . . . . . . . 13  |-  ( ph  ->  A. k  e.  A  Q  e.  B )
9190ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  ->  A. k  e.  A  Q  e.  B )
92 rspcsbela 3853 . . . . . . . . . . . 12  |-  ( ( z  e.  A  /\  A. k  e.  A  Q  e.  B )  ->  [_ z  /  k ]_ Q  e.  B )
9389, 91, 92syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  ->  [_ z  /  k ]_ Q  e.  B
)
94 gsumvsca.p . . . . . . . . . . . 12  |-  .+  =  ( +g  `  W )
9567, 94, 43, 44, 45slmdvsdi 27448 . . . . . . . . . . 11  |-  ( ( W  e. SLMod  /\  ( P  e.  ( Base `  G )  /\  ( W  gsumg  ( k  e.  e 
|->  Q ) )  e.  B  /\  [_ z  /  k ]_ Q  e.  B ) )  -> 
( P  .x.  (
( W  gsumg  ( k  e.  e 
|->  Q ) )  .+  [_ z  /  k ]_ Q ) )  =  ( ( P  .x.  ( W  gsumg  ( k  e.  e 
|->  Q ) ) ) 
.+  ( P  .x.  [_ z  /  k ]_ Q ) ) )
9665, 66, 85, 93, 95syl13anc 1230 . . . . . . . . . 10  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  -> 
( P  .x.  (
( W  gsumg  ( k  e.  e 
|->  Q ) )  .+  [_ z  /  k ]_ Q ) )  =  ( ( P  .x.  ( W  gsumg  ( k  e.  e 
|->  Q ) ) ) 
.+  ( P  .x.  [_ z  /  k ]_ Q ) ) )
9796adantr 465 . . . . . . . . 9  |-  ( ( ( ( e  e. 
Fin  /\  -.  z  e.  e )  /\  ( ph  /\  ( e  u. 
{ z } ) 
C_  A ) )  /\  ( W  gsumg  ( k  e.  e  |->  ( P 
.x.  Q ) ) )  =  ( P 
.x.  ( W  gsumg  ( k  e.  e  |->  Q ) ) ) )  -> 
( P  .x.  (
( W  gsumg  ( k  e.  e 
|->  Q ) )  .+  [_ z  /  k ]_ Q ) )  =  ( ( P  .x.  ( W  gsumg  ( k  e.  e 
|->  Q ) ) ) 
.+  ( P  .x.  [_ z  /  k ]_ Q ) ) )
98 nfcsb1v 3451 . . . . . . . . . . . 12  |-  F/_ k [_ z  /  k ]_ Q
9987a1i 11 . . . . . . . . . . . 12  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  -> 
z  e.  _V )
100 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  ->  -.  z  e.  e
)
101 csbeq1a 3444 . . . . . . . . . . . 12  |-  ( k  =  z  ->  Q  =  [_ z  /  k ]_ Q )
10298, 67, 94, 69, 80, 77, 99, 100, 93, 101gsumunsnf 16788 . . . . . . . . . . 11  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  -> 
( W  gsumg  ( k  e.  ( e  u.  { z } )  |->  Q ) )  =  ( ( W  gsumg  ( k  e.  e 
|->  Q ) )  .+  [_ z  /  k ]_ Q ) )
103102oveq2d 6300 . . . . . . . . . 10  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  -> 
( P  .x.  ( W  gsumg  ( k  e.  ( e  u.  { z } )  |->  Q ) ) )  =  ( P  .x.  ( ( W  gsumg  ( k  e.  e 
|->  Q ) )  .+  [_ z  /  k ]_ Q ) ) )
104103adantr 465 . . . . . . . . 9  |-  ( ( ( ( e  e. 
Fin  /\  -.  z  e.  e )  /\  ( ph  /\  ( e  u. 
{ z } ) 
C_  A ) )  /\  ( W  gsumg  ( k  e.  e  |->  ( P 
.x.  Q ) ) )  =  ( P 
.x.  ( W  gsumg  ( k  e.  e  |->  Q ) ) ) )  -> 
( P  .x.  ( W  gsumg  ( k  e.  ( e  u.  { z } )  |->  Q ) ) )  =  ( P  .x.  ( ( W  gsumg  ( k  e.  e 
|->  Q ) )  .+  [_ z  /  k ]_ Q ) ) )
105 nfcv 2629 . . . . . . . . . . . . 13  |-  F/_ k P
106 nfcv 2629 . . . . . . . . . . . . 13  |-  F/_ k  .x.
107105, 106, 98nfov 6307 . . . . . . . . . . . 12  |-  F/_ k
( P  .x.  [_ z  /  k ]_ Q
)
10872, 39syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( e  e. 
Fin  /\  -.  z  e.  e )  /\  ( ph  /\  ( e  u. 
{ z } ) 
C_  A ) )  /\  k  e.  e )  ->  W  e. SLMod )
10972, 42syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( e  e. 
Fin  /\  -.  z  e.  e )  /\  ( ph  /\  ( e  u. 
{ z } ) 
C_  A ) )  /\  k  e.  e )  ->  P  e.  ( Base `  G )
)
11067, 43, 44, 45slmdvscl 27447 . . . . . . . . . . . . 13  |-  ( ( W  e. SLMod  /\  P  e.  ( Base `  G
)  /\  Q  e.  B )  ->  ( P  .x.  Q )  e.  B )
111108, 109, 77, 110syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ( e  e. 
Fin  /\  -.  z  e.  e )  /\  ( ph  /\  ( e  u. 
{ z } ) 
C_  A ) )  /\  k  e.  e )  ->  ( P  .x.  Q )  e.  B
)
11267, 43, 44, 45slmdvscl 27447 . . . . . . . . . . . . 13  |-  ( ( W  e. SLMod  /\  P  e.  ( Base `  G
)  /\  [_ z  / 
k ]_ Q  e.  B
)  ->  ( P  .x.  [_ z  /  k ]_ Q )  e.  B
)
11365, 66, 93, 112syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  -> 
( P  .x.  [_ z  /  k ]_ Q
)  e.  B )
114101oveq2d 6300 . . . . . . . . . . . 12  |-  ( k  =  z  ->  ( P  .x.  Q )  =  ( P  .x.  [_ z  /  k ]_ Q
) )
115107, 67, 94, 69, 80, 111, 99, 100, 113, 114gsumunsnf 16788 . . . . . . . . . . 11  |-  ( ( ( e  e.  Fin  /\ 
-.  z  e.  e )  /\  ( ph  /\  ( e  u.  {
z } )  C_  A ) )  -> 
( W  gsumg  ( k  e.  ( e  u.  { z } )  |->  ( P 
.x.  Q ) ) )  =  ( ( W  gsumg  ( k  e.  e 
|->  ( P  .x.  Q
) ) )  .+  ( P  .x.  [_ z  /  k ]_ Q
) ) )
116115adantr 465 . . . . . . . . . 10  |-  ( ( ( ( e  e. 
Fin  /\  -.  z  e.  e )  /\  ( ph  /\  ( e  u. 
{ z } ) 
C_  A ) )  /\  ( W  gsumg  ( k  e.  e  |->  ( P 
.x.  Q ) ) )  =  ( P 
.x.  ( W  gsumg  ( k  e.  e  |->  Q ) ) ) )  -> 
( W  gsumg  ( k  e.  ( e  u.  { z } )  |->  ( P 
.x.  Q ) ) )  =  ( ( W  gsumg  ( k  e.  e 
|->  ( P  .x.  Q
) ) )  .+  ( P  .x.  [_ z  /  k ]_ Q
) ) )
117 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( e  e. 
Fin  /\  -.  z  e.  e )  /\  ( ph  /\  ( e  u. 
{ z } ) 
C_  A ) )  /\  ( W  gsumg  ( k  e.  e  |->  ( P 
.x.  Q ) ) )  =  ( P 
.x.  ( W  gsumg  ( k  e.  e  |->  Q ) ) ) )  -> 
( W  gsumg  ( k  e.  e 
|->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  e 
|->  Q ) ) ) )
118117oveq1d 6299 . . . . . . . . . 10  |-  ( ( ( ( e  e. 
Fin  /\  -.  z  e.  e )  /\  ( ph  /\  ( e  u. 
{ z } ) 
C_  A ) )  /\  ( W  gsumg  ( k  e.  e  |->  ( P 
.x.  Q ) ) )  =  ( P 
.x.  ( W  gsumg  ( k  e.  e  |->  Q ) ) ) )  -> 
( ( W  gsumg  ( k  e.  e  |->  ( P 
.x.  Q ) ) )  .+  ( P 
.x.  [_ z  /  k ]_ Q ) )  =  ( ( P  .x.  ( W  gsumg  ( k  e.  e 
|->  Q ) ) ) 
.+  ( P  .x.  [_ z  /  k ]_ Q ) ) )
119116, 118eqtrd 2508 . . . . . . . . 9  |-  ( ( ( ( e  e. 
Fin  /\  -.  z  e.  e )  /\  ( ph  /\  ( e  u. 
{ z } ) 
C_  A ) )  /\  ( W  gsumg  ( k  e.  e  |->  ( P 
.x.  Q ) ) )  =  ( P 
.x.  ( W  gsumg  ( k  e.  e  |->  Q ) ) ) )  -> 
( W  gsumg  ( k  e.  ( e  u.  { z } )  |->  ( P 
.x.  Q ) ) )  =  ( ( P  .x.  ( W 
gsumg  ( k  e.  e 
|->  Q ) ) ) 
.+  ( P  .x.  [_ z  /  k ]_ Q ) ) )
12097, 104, 1193eqtr4rd 2519 . . . . . . . 8  |-  ( ( ( ( e  e. 
Fin  /\  -.  z  e.  e )  /\  ( ph  /\  ( e  u. 
{ z } ) 
C_  A ) )  /\  ( W  gsumg  ( k  e.  e  |->  ( P 
.x.  Q ) ) )  =  ( P 
.x.  ( W  gsumg  ( k  e.  e  |->  Q ) ) ) )  -> 
( W  gsumg  ( k  e.  ( e  u.  { z } )  |->  ( P 
.x.  Q ) ) )  =  ( P 
.x.  ( W  gsumg  ( k  e.  ( e  u. 
{ z } ) 
|->  Q ) ) ) )
121120exp31 604 . . . . . . 7  |-  ( ( e  e.  Fin  /\  -.  z  e.  e
)  ->  ( ( ph  /\  ( e  u. 
{ z } ) 
C_  A )  -> 
( ( W  gsumg  ( k  e.  e  |->  ( P 
.x.  Q ) ) )  =  ( P 
.x.  ( W  gsumg  ( k  e.  e  |->  Q ) ) )  ->  ( W  gsumg  ( k  e.  ( e  u.  { z } )  |->  ( P 
.x.  Q ) ) )  =  ( P 
.x.  ( W  gsumg  ( k  e.  ( e  u. 
{ z } ) 
|->  Q ) ) ) ) ) )
122121a2d 26 . . . . . 6  |-  ( ( e  e.  Fin  /\  -.  z  e.  e
)  ->  ( (
( ph  /\  (
e  u.  { z } )  C_  A
)  ->  ( W  gsumg  ( k  e.  e  |->  ( P  .x.  Q ) ) )  =  ( P  .x.  ( W 
gsumg  ( k  e.  e 
|->  Q ) ) ) )  ->  ( ( ph  /\  ( e  u. 
{ z } ) 
C_  A )  -> 
( W  gsumg  ( k  e.  ( e  u.  { z } )  |->  ( P 
.x.  Q ) ) )  =  ( P 
.x.  ( W  gsumg  ( k  e.  ( e  u. 
{ z } ) 
|->  Q ) ) ) ) ) )
12364, 122syl5 32 . . . . 5  |-  ( ( e  e.  Fin  /\  -.  z  e.  e
)  ->  ( (
( ph  /\  e  C_  A )  ->  ( W  gsumg  ( k  e.  e 
|->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  e 
|->  Q ) ) ) )  ->  ( ( ph  /\  ( e  u. 
{ z } ) 
C_  A )  -> 
( W  gsumg  ( k  e.  ( e  u.  { z } )  |->  ( P 
.x.  Q ) ) )  =  ( P 
.x.  ( W  gsumg  ( k  e.  ( e  u. 
{ z } ) 
|->  Q ) ) ) ) ) )
12411, 20, 29, 38, 59, 123findcard2s 7761 . . . 4  |-  ( A  e.  Fin  ->  (
( ph  /\  A  C_  A )  ->  ( W  gsumg  ( k  e.  A  |->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  A  |->  Q ) ) ) ) )
125124imp 429 . . 3  |-  ( ( A  e.  Fin  /\  ( ph  /\  A  C_  A ) )  -> 
( W  gsumg  ( k  e.  A  |->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  A  |->  Q ) ) ) )
1262, 125mpanr2 684 . 2  |-  ( ( A  e.  Fin  /\  ph )  ->  ( W  gsumg  ( k  e.  A  |->  ( P  .x.  Q ) ) )  =  ( P  .x.  ( W 
gsumg  ( k  e.  A  |->  Q ) ) ) )
1271, 126mpancom 669 1  |-  ( ph  ->  ( W  gsumg  ( k  e.  A  |->  ( P  .x.  Q
) ) )  =  ( P  .x.  ( W  gsumg  ( k  e.  A  |->  Q ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113   [_csb 3435    u. cun 3474    C_ wss 3476   (/)c0 3785   {csn 4027    |-> cmpt 4505   ` cfv 5588  (class class class)co 6284   Fincfn 7516   Basecbs 14490   +g cplusg 14555  Scalarcsca 14558   .scvsca 14559   0gc0g 14695    gsumg cgsu 14696  CMndccmn 16604  SLModcslmd 27433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-oi 7935  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-2 10594  df-n0 10796  df-z 10865  df-uz 11083  df-fz 11673  df-fzo 11793  df-seq 12076  df-hash 12374  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-0g 14697  df-gsum 14698  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-srg 16960  df-slmd 27434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator