MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumvalx Structured version   Visualization version   Unicode version

Theorem gsumvalx 16561
Description: Expand out the substitutions in df-gsum 15389. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
gsumval.b  |-  B  =  ( Base `  G
)
gsumval.z  |-  .0.  =  ( 0g `  G )
gsumval.p  |-  .+  =  ( +g  `  G )
gsumval.o  |-  O  =  { s  e.  B  |  A. t  e.  B  ( ( s  .+  t )  =  t  /\  ( t  .+  s )  =  t ) }
gsumval.w  |-  ( ph  ->  W  =  ( `' F " ( _V 
\  O ) ) )
gsumval.g  |-  ( ph  ->  G  e.  V )
gsumvalx.f  |-  ( ph  ->  F  e.  X )
gsumvalx.a  |-  ( ph  ->  dom  F  =  A )
Assertion
Ref Expression
gsumvalx  |-  ( ph  ->  ( G  gsumg  F )  =  if ( ran  F  C_  O ,  .0.  ,  if ( A  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) ) ) )
Distinct variable groups:    t, s, x, B    f, m, n, x, ph    f, F, m, n, x    f, G, m, n, x    .+ , s,
t, x    f, O, m, n, x
Allowed substitution hints:    ph( t, s)    A( x, t, f, m, n, s)    B( f, m, n)    .+ ( f, m, n)    F( t, s)    G( t, s)    O( t, s)    V( x, t, f, m, n, s)    W( x, t, f, m, n, s)    X( x, t, f, m, n, s)    .0. ( x, t, f, m, n, s)

Proof of Theorem gsumvalx
Dummy variables  g 
o  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-gsum 15389 . . 3  |-  gsumg  =  ( w  e. 
_V ,  g  e. 
_V  |->  [_ { x  e.  ( Base `  w
)  |  A. y  e.  ( Base `  w
) ( ( x ( +g  `  w
) y )  =  y  /\  ( y ( +g  `  w
) x )  =  y ) }  / 
o ]_ if ( ran  g  C_  o , 
( 0g `  w
) ,  if ( dom  g  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( dom  g  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) ) ) ,  ( iota x E. f [. ( `' g " ( _V 
\  o ) )  /  y ]. (
f : ( 1 ... ( # `  y
) ) -1-1-onto-> y  /\  x  =  (  seq 1
( ( +g  `  w
) ,  ( g  o.  f ) ) `
 ( # `  y
) ) ) ) ) ) )
21a1i 11 . 2  |-  ( ph  -> 
gsumg  =  ( w  e. 
_V ,  g  e. 
_V  |->  [_ { x  e.  ( Base `  w
)  |  A. y  e.  ( Base `  w
) ( ( x ( +g  `  w
) y )  =  y  /\  ( y ( +g  `  w
) x )  =  y ) }  / 
o ]_ if ( ran  g  C_  o , 
( 0g `  w
) ,  if ( dom  g  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( dom  g  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) ) ) ,  ( iota x E. f [. ( `' g " ( _V 
\  o ) )  /  y ]. (
f : ( 1 ... ( # `  y
) ) -1-1-onto-> y  /\  x  =  (  seq 1
( ( +g  `  w
) ,  ( g  o.  f ) ) `
 ( # `  y
) ) ) ) ) ) ) )
3 simprl 769 . . . . . . . 8  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  ->  w  =  G )
43fveq2d 5891 . . . . . . 7  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( Base `  w )  =  ( Base `  G
) )
5 gsumval.b . . . . . . 7  |-  B  =  ( Base `  G
)
64, 5syl6eqr 2513 . . . . . 6  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( Base `  w )  =  B )
73fveq2d 5891 . . . . . . . . . . 11  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( +g  `  w )  =  ( +g  `  G
) )
8 gsumval.p . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
97, 8syl6eqr 2513 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( +g  `  w )  =  .+  )
109oveqd 6331 . . . . . . . . 9  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( x ( +g  `  w ) y )  =  ( x  .+  y ) )
1110eqeq1d 2463 . . . . . . . 8  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( ( x ( +g  `  w ) y )  =  y  <-> 
( x  .+  y
)  =  y ) )
129oveqd 6331 . . . . . . . . 9  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( y ( +g  `  w ) x )  =  ( y  .+  x ) )
1312eqeq1d 2463 . . . . . . . 8  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( ( y ( +g  `  w ) x )  =  y  <-> 
( y  .+  x
)  =  y ) )
1411, 13anbi12d 722 . . . . . . 7  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( ( ( x ( +g  `  w
) y )  =  y  /\  ( y ( +g  `  w
) x )  =  y )  <->  ( (
x  .+  y )  =  y  /\  (
y  .+  x )  =  y ) ) )
156, 14raleqbidv 3012 . . . . . 6  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  -> 
( A. y  e.  ( Base `  w
) ( ( x ( +g  `  w
) y )  =  y  /\  ( y ( +g  `  w
) x )  =  y )  <->  A. y  e.  B  ( (
x  .+  y )  =  y  /\  (
y  .+  x )  =  y ) ) )
166, 15rabeqbidv 3051 . . . . 5  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  ->  { x  e.  ( Base `  w )  | 
A. y  e.  (
Base `  w )
( ( x ( +g  `  w ) y )  =  y  /\  ( y ( +g  `  w ) x )  =  y ) }  =  {
x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )
17 gsumval.o . . . . . 6  |-  O  =  { s  e.  B  |  A. t  e.  B  ( ( s  .+  t )  =  t  /\  ( t  .+  s )  =  t ) }
18 oveq2 6322 . . . . . . . . . . 11  |-  ( t  =  y  ->  (
s  .+  t )  =  ( s  .+  y ) )
19 id 22 . . . . . . . . . . 11  |-  ( t  =  y  ->  t  =  y )
2018, 19eqeq12d 2476 . . . . . . . . . 10  |-  ( t  =  y  ->  (
( s  .+  t
)  =  t  <->  ( s  .+  y )  =  y ) )
21 oveq1 6321 . . . . . . . . . . 11  |-  ( t  =  y  ->  (
t  .+  s )  =  ( y  .+  s ) )
2221, 19eqeq12d 2476 . . . . . . . . . 10  |-  ( t  =  y  ->  (
( t  .+  s
)  =  t  <->  ( y  .+  s )  =  y ) )
2320, 22anbi12d 722 . . . . . . . . 9  |-  ( t  =  y  ->  (
( ( s  .+  t )  =  t  /\  ( t  .+  s )  =  t )  <->  ( ( s 
.+  y )  =  y  /\  ( y 
.+  s )  =  y ) ) )
2423cbvralv 3030 . . . . . . . 8  |-  ( A. t  e.  B  (
( s  .+  t
)  =  t  /\  ( t  .+  s
)  =  t )  <->  A. y  e.  B  ( ( s  .+  y )  =  y  /\  ( y  .+  s )  =  y ) )
25 oveq1 6321 . . . . . . . . . . 11  |-  ( s  =  x  ->  (
s  .+  y )  =  ( x  .+  y ) )
2625eqeq1d 2463 . . . . . . . . . 10  |-  ( s  =  x  ->  (
( s  .+  y
)  =  y  <->  ( x  .+  y )  =  y ) )
27 oveq2 6322 . . . . . . . . . . 11  |-  ( s  =  x  ->  (
y  .+  s )  =  ( y  .+  x ) )
2827eqeq1d 2463 . . . . . . . . . 10  |-  ( s  =  x  ->  (
( y  .+  s
)  =  y  <->  ( y  .+  x )  =  y ) )
2926, 28anbi12d 722 . . . . . . . . 9  |-  ( s  =  x  ->  (
( ( s  .+  y )  =  y  /\  ( y  .+  s )  =  y )  <->  ( ( x 
.+  y )  =  y  /\  ( y 
.+  x )  =  y ) ) )
3029ralbidv 2838 . . . . . . . 8  |-  ( s  =  x  ->  ( A. y  e.  B  ( ( s  .+  y )  =  y  /\  ( y  .+  s )  =  y )  <->  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )
3124, 30syl5bb 265 . . . . . . 7  |-  ( s  =  x  ->  ( A. t  e.  B  ( ( s  .+  t )  =  t  /\  ( t  .+  s )  =  t )  <->  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) ) )
3231cbvrabv 3055 . . . . . 6  |-  { s  e.  B  |  A. t  e.  B  (
( s  .+  t
)  =  t  /\  ( t  .+  s
)  =  t ) }  =  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }
3317, 32eqtri 2483 . . . . 5  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
3416, 33syl6eqr 2513 . . . 4  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  ->  { x  e.  ( Base `  w )  | 
A. y  e.  (
Base `  w )
( ( x ( +g  `  w ) y )  =  y  /\  ( y ( +g  `  w ) x )  =  y ) }  =  O )
3534csbeq1d 3381 . . 3  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  ->  [_ { x  e.  (
Base `  w )  |  A. y  e.  (
Base `  w )
( ( x ( +g  `  w ) y )  =  y  /\  ( y ( +g  `  w ) x )  =  y ) }  /  o ]_ if ( ran  g  C_  o ,  ( 0g
`  w ) ,  if ( dom  g  e.  ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( dom  g  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) ) ) ,  ( iota x E. f [. ( `' g "
( _V  \  o
) )  /  y ]. ( f : ( 1 ... ( # `  y ) ) -1-1-onto-> y  /\  x  =  (  seq 1 ( ( +g  `  w ) ,  ( g  o.  f ) ) `  ( # `  y ) ) ) ) ) )  = 
[_ O  /  o ]_ if ( ran  g  C_  o ,  ( 0g
`  w ) ,  if ( dom  g  e.  ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( dom  g  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) ) ) ,  ( iota x E. f [. ( `' g "
( _V  \  o
) )  /  y ]. ( f : ( 1 ... ( # `  y ) ) -1-1-onto-> y  /\  x  =  (  seq 1 ( ( +g  `  w ) ,  ( g  o.  f ) ) `  ( # `  y ) ) ) ) ) ) )
36 fvex 5897 . . . . . . 7  |-  ( Base `  G )  e.  _V
375, 36eqeltri 2535 . . . . . 6  |-  B  e. 
_V
3817, 37rabex2 4569 . . . . 5  |-  O  e. 
_V
3938a1i 11 . . . 4  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  ->  O  e.  _V )
40 simplrr 776 . . . . . . 7  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  g  =  F )
4140rneqd 5080 . . . . . 6  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  ran  g  =  ran  F )
42 simpr 467 . . . . . 6  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  o  =  O )
4341, 42sseq12d 3472 . . . . 5  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  ( ran  g  C_  o  <->  ran  F  C_  O ) )
443adantr 471 . . . . . . 7  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  w  =  G )
4544fveq2d 5891 . . . . . 6  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  ( 0g `  w )  =  ( 0g `  G
) )
46 gsumval.z . . . . . 6  |-  .0.  =  ( 0g `  G )
4745, 46syl6eqr 2513 . . . . 5  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  ( 0g `  w )  =  .0.  )
4840dmeqd 5055 . . . . . . . 8  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  dom  g  =  dom  F )
49 gsumvalx.a . . . . . . . . 9  |-  ( ph  ->  dom  F  =  A )
5049ad2antrr 737 . . . . . . . 8  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  dom  F  =  A )
5148, 50eqtrd 2495 . . . . . . 7  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  dom  g  =  A )
5251eleq1d 2523 . . . . . 6  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  ( dom  g  e.  ran  ...  <->  A  e.  ran  ... )
)
5351eqeq1d 2463 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  ( dom  g  =  (
m ... n )  <->  A  =  ( m ... n
) ) )
549adantr 471 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  ( +g  `  w )  = 
.+  )
5554seqeq2d 12251 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  seq m ( ( +g  `  w ) ,  g )  =  seq m
(  .+  ,  g
) )
5640seqeq3d 12252 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  seq m (  .+  , 
g )  =  seq m (  .+  ,  F ) )
5755, 56eqtrd 2495 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  seq m ( ( +g  `  w ) ,  g )  =  seq m
(  .+  ,  F
) )
5857fveq1d 5889 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  (  seq m ( ( +g  `  w ) ,  g ) `  n )  =  (  seq m
(  .+  ,  F
) `  n )
)
5958eqeq2d 2471 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  (
x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n )  <-> 
x  =  (  seq m (  .+  ,  F ) `  n
) ) )
6053, 59anbi12d 722 . . . . . . . . 9  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  (
( dom  g  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) )  <->  ( A  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
) ) )
6160rexbidv 2912 . . . . . . . 8  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  ( E. n  e.  ( ZZ>=
`  m ) ( dom  g  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) )  <->  E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
6261exbidv 1778 . . . . . . 7  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  ( E. m E. n  e.  ( ZZ>= `  m )
( dom  g  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) )  <->  E. m E. n  e.  ( ZZ>=
`  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
6362iotabidv 5585 . . . . . 6  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  ( iota x E. m E. n  e.  ( ZZ>= `  m ) ( dom  g  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) ) )  =  ( iota x E. m E. n  e.  ( ZZ>=
`  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) )
6442difeq2d 3562 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  ( _V  \  o )  =  ( _V  \  O
) )
6564imaeq2d 5186 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  ( `' F " ( _V 
\  o ) )  =  ( `' F " ( _V  \  O
) ) )
6640cnveqd 5028 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  `' g  =  `' F
)
6766imaeq1d 5185 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  ( `' g " ( _V  \  o ) )  =  ( `' F " ( _V  \  o
) ) )
68 gsumval.w . . . . . . . . . . . 12  |-  ( ph  ->  W  =  ( `' F " ( _V 
\  O ) ) )
6968ad2antrr 737 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  W  =  ( `' F " ( _V  \  O
) ) )
7065, 67, 693eqtr4d 2505 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  ( `' g " ( _V  \  o ) )  =  W )
7170sbceq1d 3283 . . . . . . . . 9  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  ( [. ( `' g "
( _V  \  o
) )  /  y ]. ( f : ( 1 ... ( # `  y ) ) -1-1-onto-> y  /\  x  =  (  seq 1 ( ( +g  `  w ) ,  ( g  o.  f ) ) `  ( # `  y ) ) )  <->  [. W  /  y ]. ( f : ( 1 ... ( # `  y ) ) -1-1-onto-> y  /\  x  =  (  seq 1 ( ( +g  `  w ) ,  ( g  o.  f ) ) `  ( # `  y ) ) ) ) )
72 gsumvalx.f . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  X )
73 cnvexg 6765 . . . . . . . . . . . . 13  |-  ( F  e.  X  ->  `' F  e.  _V )
74 imaexg 6756 . . . . . . . . . . . . 13  |-  ( `' F  e.  _V  ->  ( `' F " ( _V 
\  O ) )  e.  _V )
7572, 73, 743syl 18 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' F "
( _V  \  O
) )  e.  _V )
7668, 75eqeltrd 2539 . . . . . . . . . . 11  |-  ( ph  ->  W  e.  _V )
7776ad2antrr 737 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  W  e.  _V )
78 fveq2 5887 . . . . . . . . . . . . . . 15  |-  ( y  =  W  ->  ( # `
 y )  =  ( # `  W
) )
7978adantl 472 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( w  =  G  /\  g  =  F
) )  /\  o  =  O )  /\  y  =  W )  ->  ( # `
 y )  =  ( # `  W
) )
8079oveq2d 6330 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( w  =  G  /\  g  =  F
) )  /\  o  =  O )  /\  y  =  W )  ->  (
1 ... ( # `  y
) )  =  ( 1 ... ( # `  W ) ) )
81 f1oeq2 5828 . . . . . . . . . . . . 13  |-  ( ( 1 ... ( # `  y ) )  =  ( 1 ... ( # `
 W ) )  ->  ( f : ( 1 ... ( # `
 y ) ) -1-1-onto-> y  <-> 
f : ( 1 ... ( # `  W
) ) -1-1-onto-> y ) )
8280, 81syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( w  =  G  /\  g  =  F
) )  /\  o  =  O )  /\  y  =  W )  ->  (
f : ( 1 ... ( # `  y
) ) -1-1-onto-> y  <->  f : ( 1 ... ( # `  W ) ) -1-1-onto-> y ) )
83 f1oeq3 5829 . . . . . . . . . . . . 13  |-  ( y  =  W  ->  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> y  <->  f : ( 1 ... ( # `  W ) ) -1-1-onto-> W ) )
8483adantl 472 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( w  =  G  /\  g  =  F
) )  /\  o  =  O )  /\  y  =  W )  ->  (
f : ( 1 ... ( # `  W
) ) -1-1-onto-> y  <->  f : ( 1 ... ( # `  W ) ) -1-1-onto-> W ) )
8582, 84bitrd 261 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( w  =  G  /\  g  =  F
) )  /\  o  =  O )  /\  y  =  W )  ->  (
f : ( 1 ... ( # `  y
) ) -1-1-onto-> y  <->  f : ( 1 ... ( # `  W ) ) -1-1-onto-> W ) )
8654seqeq2d 12251 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  seq 1 ( ( +g  `  w ) ,  ( g  o.  f ) )  =  seq 1
(  .+  ,  (
g  o.  f ) ) )
8740coeq1d 5014 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  (
g  o.  f )  =  ( F  o.  f ) )
8887seqeq3d 12252 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  seq 1 (  .+  , 
( g  o.  f
) )  =  seq 1 (  .+  , 
( F  o.  f
) ) )
8986, 88eqtrd 2495 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  seq 1 ( ( +g  `  w ) ,  ( g  o.  f ) )  =  seq 1
(  .+  ,  ( F  o.  f )
) )
9089adantr 471 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( w  =  G  /\  g  =  F
) )  /\  o  =  O )  /\  y  =  W )  ->  seq 1 ( ( +g  `  w ) ,  ( g  o.  f ) )  =  seq 1
(  .+  ,  ( F  o.  f )
) )
9190, 79fveq12d 5893 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( w  =  G  /\  g  =  F
) )  /\  o  =  O )  /\  y  =  W )  ->  (  seq 1 ( ( +g  `  w ) ,  ( g  o.  f ) ) `  ( # `  y ) )  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) )
9291eqeq2d 2471 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( w  =  G  /\  g  =  F
) )  /\  o  =  O )  /\  y  =  W )  ->  (
x  =  (  seq 1 ( ( +g  `  w ) ,  ( g  o.  f ) ) `  ( # `  y ) )  <->  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) )
9385, 92anbi12d 722 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( w  =  G  /\  g  =  F
) )  /\  o  =  O )  /\  y  =  W )  ->  (
( f : ( 1 ... ( # `  y ) ) -1-1-onto-> y  /\  x  =  (  seq 1 ( ( +g  `  w ) ,  ( g  o.  f ) ) `  ( # `  y ) ) )  <-> 
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) ) )
9477, 93sbcied 3315 . . . . . . . . 9  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  ( [. W  /  y ]. ( f : ( 1 ... ( # `  y ) ) -1-1-onto-> y  /\  x  =  (  seq 1 ( ( +g  `  w ) ,  ( g  o.  f ) ) `  ( # `  y ) ) )  <-> 
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) ) )
9571, 94bitrd 261 . . . . . . . 8  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  ( [. ( `' g "
( _V  \  o
) )  /  y ]. ( f : ( 1 ... ( # `  y ) ) -1-1-onto-> y  /\  x  =  (  seq 1 ( ( +g  `  w ) ,  ( g  o.  f ) ) `  ( # `  y ) ) )  <-> 
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) ) )
9695exbidv 1778 . . . . . . 7  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  ( E. f [. ( `' g " ( _V 
\  o ) )  /  y ]. (
f : ( 1 ... ( # `  y
) ) -1-1-onto-> y  /\  x  =  (  seq 1
( ( +g  `  w
) ,  ( g  o.  f ) ) `
 ( # `  y
) ) )  <->  E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) ) )
9796iotabidv 5585 . . . . . 6  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  ( iota x E. f [. ( `' g " ( _V  \  o ) )  /  y ]. (
f : ( 1 ... ( # `  y
) ) -1-1-onto-> y  /\  x  =  (  seq 1
( ( +g  `  w
) ,  ( g  o.  f ) ) `
 ( # `  y
) ) ) )  =  ( iota x E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) )
9852, 63, 97ifbieq12d 3919 . . . . 5  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  if ( dom  g  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( dom  g  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) ) ) ,  ( iota x E. f [. ( `' g " ( _V 
\  o ) )  /  y ]. (
f : ( 1 ... ( # `  y
) ) -1-1-onto-> y  /\  x  =  (  seq 1
( ( +g  `  w
) ,  ( g  o.  f ) ) `
 ( # `  y
) ) ) ) )  =  if ( A  e.  ran  ... ,  ( iota x E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) ) )
9943, 47, 98ifbieq12d 3919 . . . 4  |-  ( ( ( ph  /\  (
w  =  G  /\  g  =  F )
)  /\  o  =  O )  ->  if ( ran  g  C_  o ,  ( 0g `  w ) ,  if ( dom  g  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( dom  g  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) ) ) ,  ( iota x E. f [. ( `' g " ( _V 
\  o ) )  /  y ]. (
f : ( 1 ... ( # `  y
) ) -1-1-onto-> y  /\  x  =  (  seq 1
( ( +g  `  w
) ,  ( g  o.  f ) ) `
 ( # `  y
) ) ) ) ) )  =  if ( ran  F  C_  O ,  .0.  ,  if ( A  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) ) ) )
10039, 99csbied 3401 . . 3  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  ->  [_ O  /  o ]_ if ( ran  g  C_  o ,  ( 0g
`  w ) ,  if ( dom  g  e.  ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( dom  g  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) ) ) ,  ( iota x E. f [. ( `' g "
( _V  \  o
) )  /  y ]. ( f : ( 1 ... ( # `  y ) ) -1-1-onto-> y  /\  x  =  (  seq 1 ( ( +g  `  w ) ,  ( g  o.  f ) ) `  ( # `  y ) ) ) ) ) )  =  if ( ran  F  C_  O ,  .0.  ,  if ( A  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) ) ) )
10135, 100eqtrd 2495 . 2  |-  ( (
ph  /\  ( w  =  G  /\  g  =  F ) )  ->  [_ { x  e.  (
Base `  w )  |  A. y  e.  (
Base `  w )
( ( x ( +g  `  w ) y )  =  y  /\  ( y ( +g  `  w ) x )  =  y ) }  /  o ]_ if ( ran  g  C_  o ,  ( 0g
`  w ) ,  if ( dom  g  e.  ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( dom  g  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  w ) ,  g ) `  n ) ) ) ,  ( iota x E. f [. ( `' g "
( _V  \  o
) )  /  y ]. ( f : ( 1 ... ( # `  y ) ) -1-1-onto-> y  /\  x  =  (  seq 1 ( ( +g  `  w ) ,  ( g  o.  f ) ) `  ( # `  y ) ) ) ) ) )  =  if ( ran  F  C_  O ,  .0.  ,  if ( A  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) ) ) )
102 gsumval.g . . 3  |-  ( ph  ->  G  e.  V )
103 elex 3065 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
104102, 103syl 17 . 2  |-  ( ph  ->  G  e.  _V )
105 elex 3065 . . 3  |-  ( F  e.  X  ->  F  e.  _V )
10672, 105syl 17 . 2  |-  ( ph  ->  F  e.  _V )
107 fvex 5897 . . . . 5  |-  ( 0g
`  G )  e. 
_V
10846, 107eqeltri 2535 . . . 4  |-  .0.  e.  _V
109 iotaex 5581 . . . . 5  |-  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m
(  .+  ,  F
) `  n )
) )  e.  _V
110 iotaex 5581 . . . . 5  |-  ( iota
x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq 1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) ) )  e.  _V
111109, 110ifex 3960 . . . 4  |-  if ( A  e.  ran  ... ,  ( iota x E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) )  e.  _V
112108, 111ifex 3960 . . 3  |-  if ( ran  F  C_  O ,  .0.  ,  if ( A  e.  ran  ... ,  ( iota x E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) ) )  e.  _V
113112a1i 11 . 2  |-  ( ph  ->  if ( ran  F  C_  O ,  .0.  ,  if ( A  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) ) )  e.  _V )
1142, 101, 104, 106, 113ovmpt2d 6450 1  |-  ( ph  ->  ( G  gsumg  F )  =  if ( ran  F  C_  O ,  .0.  ,  if ( A  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n
) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1454   E.wex 1673    e. wcel 1897   A.wral 2748   E.wrex 2749   {crab 2752   _Vcvv 3056   [.wsbc 3278   [_csb 3374    \ cdif 3412    C_ wss 3415   ifcif 3892   `'ccnv 4851   dom cdm 4852   ran crn 4853   "cima 4855    o. ccom 4856   iotacio 5562   -1-1-onto->wf1o 5599   ` cfv 5600  (class class class)co 6314    |-> cmpt2 6316   1c1 9565   ZZ>=cuz 11187   ...cfz 11812    seqcseq 12244   #chash 12546   Basecbs 15169   +g cplusg 15238   0gc0g 15386    gsumg cgsu 15387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-ral 2753  df-rex 2754  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-op 3986  df-uni 4212  df-br 4416  df-opab 4475  df-mpt 4476  df-id 4767  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-pred 5398  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-ov 6317  df-oprab 6318  df-mpt2 6319  df-wrecs 7053  df-recs 7115  df-rdg 7153  df-seq 12245  df-gsum 15389
This theorem is referenced by:  gsumval  16562  gsumpropd  16563  gsumpropd2lem  16564
  Copyright terms: Public domain W3C validator