MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3a Unicode version

Theorem gsumval3a 15467
Description: Value of the group sum operation over an index set with finite support. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval3.b  |-  B  =  ( Base `  G
)
gsumval3.0  |-  .0.  =  ( 0g `  G )
gsumval3.p  |-  .+  =  ( +g  `  G )
gsumval3.z  |-  Z  =  (Cntz `  G )
gsumval3.g  |-  ( ph  ->  G  e.  Mnd )
gsumval3.a  |-  ( ph  ->  A  e.  V )
gsumval3.f  |-  ( ph  ->  F : A --> B )
gsumval3.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumval3a.t  |-  ( ph  ->  W  e.  Fin )
gsumval3a.n  |-  ( ph  ->  W  =/=  (/) )
gsumval3a.w  |-  W  =  ( `' F "
( _V  \  {  .0.  } ) )
gsumval3a.i  |-  ( ph  ->  -.  A  e.  ran  ... )
Assertion
Ref Expression
gsumval3a  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq  1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) ) )
Distinct variable groups:    x, f,  .+    A, f, x    ph, f, x    x,  .0.    f, G, x   
x, V    B, f, x    f, F, x    f, W, x
Allowed substitution hints:    V( f)    .0. ( f)    Z( x, f)

Proof of Theorem gsumval3a
Dummy variables  m  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3.b . . 3  |-  B  =  ( Base `  G
)
2 gsumval3.0 . . 3  |-  .0.  =  ( 0g `  G )
3 gsumval3.p . . 3  |-  .+  =  ( +g  `  G )
4 eqid 2404 . . 3  |-  { z  e.  B  |  A. y  e.  B  (
( z  .+  y
)  =  y  /\  ( y  .+  z
)  =  y ) }  =  { z  e.  B  |  A. y  e.  B  (
( z  .+  y
)  =  y  /\  ( y  .+  z
)  =  y ) }
5 gsumval3.g . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
61, 2, 3, 4gsumvallem2 14727 . . . . . . 7  |-  ( G  e.  Mnd  ->  { z  e.  B  |  A. y  e.  B  (
( z  .+  y
)  =  y  /\  ( y  .+  z
)  =  y ) }  =  {  .0.  } )
75, 6syl 16 . . . . . 6  |-  ( ph  ->  { z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) }  =  {  .0.  } )
87difeq2d 3425 . . . . 5  |-  ( ph  ->  ( _V  \  {
z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) } )  =  ( _V  \  {  .0.  } ) )
98imaeq2d 5162 . . . 4  |-  ( ph  ->  ( `' F "
( _V  \  {
z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) } ) )  =  ( `' F " ( _V  \  {  .0.  } ) ) )
10 gsumval3a.w . . . 4  |-  W  =  ( `' F "
( _V  \  {  .0.  } ) )
119, 10syl6reqr 2455 . . 3  |-  ( ph  ->  W  =  ( `' F " ( _V 
\  { z  e.  B  |  A. y  e.  B  ( (
z  .+  y )  =  y  /\  (
y  .+  z )  =  y ) } ) ) )
12 gsumval3.a . . 3  |-  ( ph  ->  A  e.  V )
13 gsumval3.f . . 3  |-  ( ph  ->  F : A --> B )
141, 2, 3, 4, 11, 5, 12, 13gsumval 14730 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  if ( ran  F  C_  { z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) } ,  .0.  ,  if ( A  e. 
ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq  m ( 
.+  ,  F ) `
 n ) ) ) ,  ( iota
x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq  1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) ) ) ) ) )
15 gsumval3a.n . . . 4  |-  ( ph  ->  W  =/=  (/) )
167sseq2d 3336 . . . . . 6  |-  ( ph  ->  ( ran  F  C_  { z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) }  <->  ran  F  C_  {  .0.  } ) )
17 ffn 5550 . . . . . . . . . . . 12  |-  ( F : A --> B  ->  F  Fn  A )
1813, 17syl 16 . . . . . . . . . . 11  |-  ( ph  ->  F  Fn  A )
1918adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ran  F  C_  {  .0.  } )  ->  F  Fn  A )
20 simpr 448 . . . . . . . . . 10  |-  ( (
ph  /\  ran  F  C_  {  .0.  } )  ->  ran  F  C_  {  .0.  } )
21 df-f 5417 . . . . . . . . . 10  |-  ( F : A --> {  .0.  }  <-> 
( F  Fn  A  /\  ran  F  C_  {  .0.  } ) )
2219, 20, 21sylanbrc 646 . . . . . . . . 9  |-  ( (
ph  /\  ran  F  C_  {  .0.  } )  ->  F : A --> {  .0.  } )
23 disjdif 3660 . . . . . . . . 9  |-  ( {  .0.  }  i^i  ( _V  \  {  .0.  }
) )  =  (/)
24 fimacnvdisj 5580 . . . . . . . . 9  |-  ( ( F : A --> {  .0.  }  /\  ( {  .0.  }  i^i  ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( `' F " ( _V 
\  {  .0.  }
) )  =  (/) )
2522, 23, 24sylancl 644 . . . . . . . 8  |-  ( (
ph  /\  ran  F  C_  {  .0.  } )  -> 
( `' F "
( _V  \  {  .0.  } ) )  =  (/) )
2610, 25syl5eq 2448 . . . . . . 7  |-  ( (
ph  /\  ran  F  C_  {  .0.  } )  ->  W  =  (/) )
2726ex 424 . . . . . 6  |-  ( ph  ->  ( ran  F  C_  {  .0.  }  ->  W  =  (/) ) )
2816, 27sylbid 207 . . . . 5  |-  ( ph  ->  ( ran  F  C_  { z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) }  ->  W  =  (/) ) )
2928necon3ad 2603 . . . 4  |-  ( ph  ->  ( W  =/=  (/)  ->  -.  ran  F  C_  { z  e.  B  |  A. y  e.  B  (
( z  .+  y
)  =  y  /\  ( y  .+  z
)  =  y ) } ) )
3015, 29mpd 15 . . 3  |-  ( ph  ->  -.  ran  F  C_  { z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) } )
31 iffalse 3706 . . 3  |-  ( -. 
ran  F  C_  { z  e.  B  |  A. y  e.  B  (
( z  .+  y
)  =  y  /\  ( y  .+  z
)  =  y ) }  ->  if ( ran  F  C_  { z  e.  B  |  A. y  e.  B  (
( z  .+  y
)  =  y  /\  ( y  .+  z
)  =  y ) } ,  .0.  ,  if ( A  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq  m (  .+  ,  F ) `  n
) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq  1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) ) )  =  if ( A  e.  ran  ... ,  ( iota x E. m E. n  e.  (
ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq  m (  .+  ,  F ) `  n
) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq  1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) ) )
3230, 31syl 16 . 2  |-  ( ph  ->  if ( ran  F  C_ 
{ z  e.  B  |  A. y  e.  B  ( ( z  .+  y )  =  y  /\  ( y  .+  z )  =  y ) } ,  .0.  ,  if ( A  e. 
ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq  m ( 
.+  ,  F ) `
 n ) ) ) ,  ( iota
x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq  1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) ) ) ) )  =  if ( A  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  x  =  (  seq  m (  .+  ,  F ) `  n
) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 W ) ) -1-1-onto-> W  /\  x  =  (  seq  1 (  .+  ,  ( F  o.  f ) ) `  ( # `  W ) ) ) ) ) )
33 gsumval3a.i . . 3  |-  ( ph  ->  -.  A  e.  ran  ... )
34 iffalse 3706 . . 3  |-  ( -.  A  e.  ran  ...  ->  if ( A  e. 
ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq  m ( 
.+  ,  F ) `
 n ) ) ) ,  ( iota
x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq  1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) ) ) )  =  ( iota
x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq  1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) ) ) )
3533, 34syl 16 . 2  |-  ( ph  ->  if ( A  e. 
ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( A  =  ( m ... n )  /\  x  =  (  seq  m ( 
.+  ,  F ) `
 n ) ) ) ,  ( iota
x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq  1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) ) ) )  =  ( iota
x E. f ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  /\  x  =  (  seq  1 ( 
.+  ,  ( F  o.  f ) ) `
 ( # `  W
) ) ) ) )
3614, 32, 353eqtrd 2440 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( iota x E. f
( f : ( 1 ... ( # `  W ) ) -1-1-onto-> W  /\  x  =  (  seq  1 (  .+  , 
( F  o.  f
) ) `  ( # `
 W ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   {crab 2670   _Vcvv 2916    \ cdif 3277    i^i cin 3279    C_ wss 3280   (/)c0 3588   ifcif 3699   {csn 3774   `'ccnv 4836   ran crn 4838   "cima 4840    o. ccom 4841   iotacio 5375    Fn wfn 5408   -->wf 5409   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6040   Fincfn 7068   1c1 8947   ZZ>=cuz 10444   ...cfz 10999    seq cseq 11278   #chash 11573   Basecbs 13424   +g cplusg 13484   0gc0g 13678    gsumg cgsu 13679   Mndcmnd 14639  Cntzccntz 15069
This theorem is referenced by:  gsumval3  15469
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-seq 11279  df-0g 13682  df-gsum 13683  df-mnd 14645
  Copyright terms: Public domain W3C validator