MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3 Structured version   Unicode version

Theorem gsumval3 17038
Description: Value of the group sum operation over an arbitrary finite set. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumval3.b  |-  B  =  ( Base `  G
)
gsumval3.0  |-  .0.  =  ( 0g `  G )
gsumval3.p  |-  .+  =  ( +g  `  G )
gsumval3.z  |-  Z  =  (Cntz `  G )
gsumval3.g  |-  ( ph  ->  G  e.  Mnd )
gsumval3.a  |-  ( ph  ->  A  e.  V )
gsumval3.f  |-  ( ph  ->  F : A --> B )
gsumval3.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumval3.m  |-  ( ph  ->  M  e.  NN )
gsumval3.h  |-  ( ph  ->  H : ( 1 ... M ) -1-1-> A
)
gsumval3.n  |-  ( ph  ->  ( F supp  .0.  )  C_ 
ran  H )
gsumval3.w  |-  W  =  ( ( F  o.  H ) supp  .0.  )
Assertion
Ref Expression
gsumval3  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) )

Proof of Theorem gsumval3
Dummy variables  f 
k  m  n  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3.g . . . . 5  |-  ( ph  ->  G  e.  Mnd )
2 gsumval3.a . . . . 5  |-  ( ph  ->  A  e.  V )
3 gsumval3.0 . . . . . 6  |-  .0.  =  ( 0g `  G )
43gsumz 16132 . . . . 5  |-  ( ( G  e.  Mnd  /\  A  e.  V )  ->  ( G  gsumg  ( x  e.  A  |->  .0.  ) )  =  .0.  )
51, 2, 4syl2anc 661 . . . 4  |-  ( ph  ->  ( G  gsumg  ( x  e.  A  |->  .0.  ) )  =  .0.  )
65adantr 465 . . 3  |-  ( (
ph  /\  W  =  (/) )  ->  ( G  gsumg  ( x  e.  A  |->  .0.  ) )  =  .0.  )
7 gsumval3.f . . . . . . 7  |-  ( ph  ->  F : A --> B )
87feqmptd 5926 . . . . . 6  |-  ( ph  ->  F  =  ( x  e.  A  |->  ( F `
 x ) ) )
98adantr 465 . . . . 5  |-  ( (
ph  /\  W  =  (/) )  ->  F  =  ( x  e.  A  |->  ( F `  x
) ) )
10 gsumval3.h . . . . . . . . . . . . . 14  |-  ( ph  ->  H : ( 1 ... M ) -1-1-> A
)
11 f1f 5787 . . . . . . . . . . . . . 14  |-  ( H : ( 1 ... M ) -1-1-> A  ->  H : ( 1 ... M ) --> A )
1210, 11syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  H : ( 1 ... M ) --> A )
1312ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  ->  H : ( 1 ... M ) --> A )
14 f1f1orn 5833 . . . . . . . . . . . . . . . 16  |-  ( H : ( 1 ... M ) -1-1-> A  ->  H : ( 1 ... M ) -1-1-onto-> ran  H )
1510, 14syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  H : ( 1 ... M ) -1-1-onto-> ran  H
)
1615adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  W  =  (/) )  ->  H :
( 1 ... M
)
-1-1-onto-> ran  H )
17 f1ocnv 5834 . . . . . . . . . . . . . 14  |-  ( H : ( 1 ... M ) -1-1-onto-> ran  H  ->  `' H : ran  H -1-1-onto-> ( 1 ... M ) )
18 f1of 5822 . . . . . . . . . . . . . 14  |-  ( `' H : ran  H -1-1-onto-> (
1 ... M )  ->  `' H : ran  H --> ( 1 ... M
) )
1916, 17, 183syl 20 . . . . . . . . . . . . 13  |-  ( (
ph  /\  W  =  (/) )  ->  `' H : ran  H --> ( 1 ... M ) )
2019ffvelrnda 6032 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  -> 
( `' H `  x )  e.  ( 1 ... M ) )
21 fvco3 5950 . . . . . . . . . . . 12  |-  ( ( H : ( 1 ... M ) --> A  /\  ( `' H `  x )  e.  ( 1 ... M ) )  ->  ( ( F  o.  H ) `  ( `' H `  x ) )  =  ( F `  ( H `  ( `' H `  x )
) ) )
2213, 20, 21syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  -> 
( ( F  o.  H ) `  ( `' H `  x ) )  =  ( F `
 ( H `  ( `' H `  x ) ) ) )
23 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  W  =  (/) )  ->  W  =  (/) )
2423difeq2d 3618 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  W  =  (/) )  ->  ( (
1 ... M )  \  W )  =  ( ( 1 ... M
)  \  (/) ) )
25 dif0 3901 . . . . . . . . . . . . . . 15  |-  ( ( 1 ... M ) 
\  (/) )  =  ( 1 ... M )
2624, 25syl6eq 2514 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  W  =  (/) )  ->  ( (
1 ... M )  \  W )  =  ( 1 ... M ) )
2726adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  -> 
( ( 1 ... M )  \  W
)  =  ( 1 ... M ) )
2820, 27eleqtrrd 2548 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  -> 
( `' H `  x )  e.  ( ( 1 ... M
)  \  W )
)
29 fco 5747 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> B  /\  H : ( 1 ... M ) --> A )  ->  ( F  o.  H ) : ( 1 ... M ) --> B )
307, 12, 29syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  o.  H
) : ( 1 ... M ) --> B )
3130adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  W  =  (/) )  ->  ( F  o.  H ) : ( 1 ... M ) --> B )
32 gsumval3.w . . . . . . . . . . . . . . 15  |-  W  =  ( ( F  o.  H ) supp  .0.  )
3332eqimss2i 3554 . . . . . . . . . . . . . 14  |-  ( ( F  o.  H ) supp 
.0.  )  C_  W
3433a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  W  =  (/) )  ->  ( ( F  o.  H ) supp  .0.  )  C_  W )
35 ovex 6324 . . . . . . . . . . . . . 14  |-  ( 1 ... M )  e. 
_V
3635a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  W  =  (/) )  ->  ( 1 ... M )  e. 
_V )
37 fvex 5882 . . . . . . . . . . . . . . 15  |-  ( 0g
`  G )  e. 
_V
383, 37eqeltri 2541 . . . . . . . . . . . . . 14  |-  .0.  e.  _V
3938a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  W  =  (/) )  ->  .0.  e.  _V )
4031, 34, 36, 39suppssr 6949 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  W  =  (/) )  /\  ( `' H `  x )  e.  ( ( 1 ... M )  \  W ) )  -> 
( ( F  o.  H ) `  ( `' H `  x ) )  =  .0.  )
4128, 40syldan 470 . . . . . . . . . . 11  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  -> 
( ( F  o.  H ) `  ( `' H `  x ) )  =  .0.  )
42 f1ocnvfv2 6184 . . . . . . . . . . . . 13  |-  ( ( H : ( 1 ... M ) -1-1-onto-> ran  H  /\  x  e.  ran  H )  ->  ( H `  ( `' H `  x ) )  =  x )
4316, 42sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  -> 
( H `  ( `' H `  x ) )  =  x )
4443fveq2d 5876 . . . . . . . . . . 11  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  -> 
( F `  ( H `  ( `' H `  x )
) )  =  ( F `  x ) )
4522, 41, 443eqtr3rd 2507 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  -> 
( F `  x
)  =  .0.  )
46 fvex 5882 . . . . . . . . . . 11  |-  ( F `
 x )  e. 
_V
4746elsnc 4056 . . . . . . . . . 10  |-  ( ( F `  x )  e.  {  .0.  }  <->  ( F `  x )  =  .0.  )
4845, 47sylibr 212 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ran  H )  -> 
( F `  x
)  e.  {  .0.  } )
4948adantlr 714 . . . . . . . 8  |-  ( ( ( ( ph  /\  W  =  (/) )  /\  x  e.  A )  /\  x  e.  ran  H )  ->  ( F `  x )  e.  {  .0.  } )
50 eldif 3481 . . . . . . . . . . 11  |-  ( x  e.  ( A  \  ran  H )  <->  ( x  e.  A  /\  -.  x  e.  ran  H ) )
51 gsumval3.n . . . . . . . . . . . . 13  |-  ( ph  ->  ( F supp  .0.  )  C_ 
ran  H )
5238a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  .0.  e.  _V )
537, 51, 2, 52suppssr 6949 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A  \  ran  H
) )  ->  ( F `  x )  =  .0.  )
5453, 47sylibr 212 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A  \  ran  H
) )  ->  ( F `  x )  e.  {  .0.  } )
5550, 54sylan2br 476 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  /\  -.  x  e.  ran  H ) )  ->  ( F `  x )  e.  {  .0.  } )
5655adantlr 714 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =  (/) )  /\  (
x  e.  A  /\  -.  x  e.  ran  H ) )  ->  ( F `  x )  e.  {  .0.  } )
5756anassrs 648 . . . . . . . 8  |-  ( ( ( ( ph  /\  W  =  (/) )  /\  x  e.  A )  /\  -.  x  e.  ran  H )  ->  ( F `  x )  e.  {  .0.  } )
5849, 57pm2.61dan 791 . . . . . . 7  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  A )  ->  ( F `  x )  e.  {  .0.  } )
5958, 47sylib 196 . . . . . 6  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  A )  ->  ( F `  x )  =  .0.  )
6059mpteq2dva 4543 . . . . 5  |-  ( (
ph  /\  W  =  (/) )  ->  ( x  e.  A  |->  ( F `
 x ) )  =  ( x  e.  A  |->  .0.  ) )
619, 60eqtrd 2498 . . . 4  |-  ( (
ph  /\  W  =  (/) )  ->  F  =  ( x  e.  A  |->  .0.  ) )
6261oveq2d 6312 . . 3  |-  ( (
ph  /\  W  =  (/) )  ->  ( G  gsumg  F )  =  ( G 
gsumg  ( x  e.  A  |->  .0.  ) ) )
63 gsumval3.b . . . . . . . 8  |-  B  =  ( Base `  G
)
6463, 3mndidcl 16065 . . . . . . 7  |-  ( G  e.  Mnd  ->  .0.  e.  B )
651, 64syl 16 . . . . . 6  |-  ( ph  ->  .0.  e.  B )
66 gsumval3.p . . . . . . 7  |-  .+  =  ( +g  `  G )
6763, 66, 3mndlid 16068 . . . . . 6  |-  ( ( G  e.  Mnd  /\  .0.  e.  B )  -> 
(  .0.  .+  .0.  )  =  .0.  )
681, 65, 67syl2anc 661 . . . . 5  |-  ( ph  ->  (  .0.  .+  .0.  )  =  .0.  )
6968adantr 465 . . . 4  |-  ( (
ph  /\  W  =  (/) )  ->  (  .0.  .+  .0.  )  =  .0.  )
70 gsumval3.m . . . . . 6  |-  ( ph  ->  M  e.  NN )
71 nnuz 11141 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
7270, 71syl6eleq 2555 . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
7372adantr 465 . . . 4  |-  ( (
ph  /\  W  =  (/) )  ->  M  e.  ( ZZ>= `  1 )
)
7426eleq2d 2527 . . . . . 6  |-  ( (
ph  /\  W  =  (/) )  ->  ( x  e.  ( ( 1 ... M )  \  W
)  <->  x  e.  (
1 ... M ) ) )
7574biimpar 485 . . . . 5  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ( 1 ... M
) )  ->  x  e.  ( ( 1 ... M )  \  W
) )
7631, 34, 36, 39suppssr 6949 . . . . 5  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ( ( 1 ... M )  \  W
) )  ->  (
( F  o.  H
) `  x )  =  .0.  )
7775, 76syldan 470 . . . 4  |-  ( ( ( ph  /\  W  =  (/) )  /\  x  e.  ( 1 ... M
) )  ->  (
( F  o.  H
) `  x )  =  .0.  )
7869, 73, 77seqid3 12154 . . 3  |-  ( (
ph  /\  W  =  (/) )  ->  (  seq 1 (  .+  , 
( F  o.  H
) ) `  M
)  =  .0.  )
796, 62, 783eqtr4d 2508 . 2  |-  ( (
ph  /\  W  =  (/) )  ->  ( G  gsumg  F )  =  (  seq 1 (  .+  , 
( F  o.  H
) ) `  M
) )
80 fzf 11701 . . . . 5  |-  ... :
( ZZ  X.  ZZ )
--> ~P ZZ
81 ffn 5737 . . . . 5  |-  ( ...
: ( ZZ  X.  ZZ ) --> ~P ZZ  ->  ... 
Fn  ( ZZ  X.  ZZ ) )
82 ovelrn 6450 . . . . 5  |-  ( ... 
Fn  ( ZZ  X.  ZZ )  ->  ( A  e.  ran  ...  <->  E. m  e.  ZZ  E. n  e.  ZZ  A  =  ( m ... n ) ) )
8380, 81, 82mp2b 10 . . . 4  |-  ( A  e.  ran  ...  <->  E. m  e.  ZZ  E. n  e.  ZZ  A  =  ( m ... n ) )
841ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  G  e.  Mnd )
85 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  A  =  ( m ... n ) )
86 frel 5740 . . . . . . . . . . . . . . . . 17  |-  ( F : A --> B  ->  Rel  F )
87 reldm0 5230 . . . . . . . . . . . . . . . . 17  |-  ( Rel 
F  ->  ( F  =  (/)  <->  dom  F  =  (/) ) )
887, 86, 873syl 20 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( F  =  (/)  <->  dom  F  =  (/) ) )
89 fdm 5741 . . . . . . . . . . . . . . . . . 18  |-  ( F : A --> B  ->  dom  F  =  A )
907, 89syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  dom  F  =  A )
9190eqeq1d 2459 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( dom  F  =  (/) 
<->  A  =  (/) ) )
9288, 91bitrd 253 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F  =  (/)  <->  A  =  (/) ) )
93 coeq1 5170 . . . . . . . . . . . . . . . . . . 19  |-  ( F  =  (/)  ->  ( F  o.  H )  =  ( (/)  o.  H
) )
94 co01 5528 . . . . . . . . . . . . . . . . . . 19  |-  ( (/)  o.  H )  =  (/)
9593, 94syl6eq 2514 . . . . . . . . . . . . . . . . . 18  |-  ( F  =  (/)  ->  ( F  o.  H )  =  (/) )
9695oveq1d 6311 . . . . . . . . . . . . . . . . 17  |-  ( F  =  (/)  ->  ( ( F  o.  H ) supp 
.0.  )  =  (
(/) supp  .0.  ) )
97 supp0 6922 . . . . . . . . . . . . . . . . . 18  |-  (  .0. 
e.  _V  ->  ( (/) supp  .0.  )  =  (/) )
9838, 97ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( (/) supp  .0.  )  =  (/)
9996, 98syl6eq 2514 . . . . . . . . . . . . . . . 16  |-  ( F  =  (/)  ->  ( ( F  o.  H ) supp 
.0.  )  =  (/) )
10032, 99syl5eq 2510 . . . . . . . . . . . . . . 15  |-  ( F  =  (/)  ->  W  =  (/) )
10192, 100syl6bir 229 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  =  (/)  ->  W  =  (/) ) )
102101necon3d 2681 . . . . . . . . . . . . 13  |-  ( ph  ->  ( W  =/=  (/)  ->  A  =/=  (/) ) )
103102imp 429 . . . . . . . . . . . 12  |-  ( (
ph  /\  W  =/=  (/) )  ->  A  =/=  (/) )
104103adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  A  =/=  (/) )
10585, 104eqnetrrd 2751 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  -> 
( m ... n
)  =/=  (/) )
106 fzn0 11725 . . . . . . . . . 10  |-  ( ( m ... n )  =/=  (/)  <->  n  e.  ( ZZ>=
`  m ) )
107105, 106sylib 196 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  n  e.  ( ZZ>= `  m ) )
1087ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  F : A --> B )
10985feq2d 5724 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  -> 
( F : A --> B 
<->  F : ( m ... n ) --> B ) )
110108, 109mpbid 210 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  F : ( m ... n ) --> B )
11163, 66, 84, 107, 110gsumval2 16034 . . . . . . . 8  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  -> 
( G  gsumg  F )  =  (  seq m (  .+  ,  F ) `  n
) )
112 frn 5743 . . . . . . . . . . . . . . 15  |-  ( H : ( 1 ... M ) --> A  ->  ran  H  C_  A )
11310, 11, 1123syl 20 . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  H  C_  A
)
114113ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  ran  H  C_  A )
115114, 85sseqtrd 3535 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  ran  H  C_  ( m ... n ) )
116 fzssuz 11750 . . . . . . . . . . . . 13  |-  ( m ... n )  C_  ( ZZ>= `  m )
117 uzssz 11125 . . . . . . . . . . . . . 14  |-  ( ZZ>= `  m )  C_  ZZ
118 zssre 10892 . . . . . . . . . . . . . 14  |-  ZZ  C_  RR
119117, 118sstri 3508 . . . . . . . . . . . . 13  |-  ( ZZ>= `  m )  C_  RR
120116, 119sstri 3508 . . . . . . . . . . . 12  |-  ( m ... n )  C_  RR
121115, 120syl6ss 3511 . . . . . . . . . . 11  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  ran  H  C_  RR )
122 ltso 9682 . . . . . . . . . . 11  |-  <  Or  RR
123 soss 4827 . . . . . . . . . . 11  |-  ( ran 
H  C_  RR  ->  (  <  Or  RR  ->  < 
Or  ran  H )
)
124121, 122, 123mpisyl 18 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  <  Or  ran  H )
125 fzfi 12085 . . . . . . . . . . . 12  |-  ( 1 ... M )  e. 
Fin
126125a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
127 fex2 6754 . . . . . . . . . . . . . . 15  |-  ( ( H : ( 1 ... M ) --> A  /\  ( 1 ... M )  e.  Fin  /\  A  e.  V )  ->  H  e.  _V )
12812, 126, 2, 127syl3anc 1228 . . . . . . . . . . . . . 14  |-  ( ph  ->  H  e.  _V )
129 f1oen3g 7550 . . . . . . . . . . . . . 14  |-  ( ( H  e.  _V  /\  H : ( 1 ... M ) -1-1-onto-> ran  H )  -> 
( 1 ... M
)  ~~  ran  H )
130128, 15, 129syl2anc 661 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1 ... M
)  ~~  ran  H )
131 enfi 7755 . . . . . . . . . . . . 13  |-  ( ( 1 ... M ) 
~~  ran  H  ->  ( ( 1 ... M
)  e.  Fin  <->  ran  H  e. 
Fin ) )
132130, 131syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1 ... M )  e.  Fin  <->  ran  H  e.  Fin ) )
133125, 132mpbii 211 . . . . . . . . . . 11  |-  ( ph  ->  ran  H  e.  Fin )
134133ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  ran  H  e.  Fin )
135 fz1iso 12515 . . . . . . . . . 10  |-  ( (  <  Or  ran  H  /\  ran  H  e.  Fin )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( # `  ran  H ) ) ,  ran  H ) )
136124, 134, 135syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( # `  ran  H ) ) ,  ran  H ) )
13770nnnn0d 10873 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  NN0 )
138 hashfz1 12422 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN0  ->  ( # `  ( 1 ... M
) )  =  M )
139137, 138syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( # `  (
1 ... M ) )  =  M )
140 hashen 12423 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1 ... M
)  e.  Fin  /\  ran  H  e.  Fin )  ->  ( ( # `  (
1 ... M ) )  =  ( # `  ran  H )  <->  ( 1 ... M )  ~~  ran  H ) )
141125, 133, 140sylancr 663 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( # `  (
1 ... M ) )  =  ( # `  ran  H )  <->  ( 1 ... M )  ~~  ran  H ) )
142130, 141mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( # `  (
1 ... M ) )  =  ( # `  ran  H ) )
143139, 142eqtr3d 2500 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  =  ( # `  ran  H ) )
144143ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  M  =  ( # `  ran  H ) )
145144fveq2d 5876 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
(  seq 1 (  .+  ,  ( F  o.  f ) ) `  M )  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  ran  H
) ) )
1461ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  G  e.  Mnd )
14763, 66mndcl 16056 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
1481473expb 1197 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
149146, 148sylan 471 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
150 gsumval3.c . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
151150ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  ran  F  C_  ( Z `  ran  F ) )
152151sselda 3499 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  ran  F )  ->  x  e.  ( Z `  ran  F
) )
153 gsumval3.z . . . . . . . . . . . . . . . 16  |-  Z  =  (Cntz `  G )
15466, 153cntzi 16494 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( Z `
 ran  F )  /\  y  e.  ran  F )  ->  ( x  .+  y )  =  ( y  .+  x ) )
155152, 154sylan 471 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  (
m ... n )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  ran  F )  /\  y  e.  ran  F )  ->  ( x  .+  y )  =  ( y  .+  x ) )
156155anasss 647 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  ( x  e.  ran  F  /\  y  e.  ran  F ) )  ->  (
x  .+  y )  =  ( y  .+  x ) )
15763, 66mndass 16057 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
158146, 157sylan 471 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
15972ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  M  e.  ( ZZ>= ` 
1 ) )
1607ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  F : A --> B )
161 frn 5743 . . . . . . . . . . . . . 14  |-  ( F : A --> B  ->  ran  F  C_  B )
162160, 161syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  ran  F  C_  B )
163 simprr 757 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
f  Isom  <  ,  <  ( ( 1 ... ( # `
 ran  H )
) ,  ran  H
) )
164 isof1o 6222 . . . . . . . . . . . . . . . . 17  |-  ( f 
Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
)  ->  f :
( 1 ... ( # `
 ran  H )
)
-1-1-onto-> ran  H )
165163, 164syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
f : ( 1 ... ( # `  ran  H ) ) -1-1-onto-> ran  H )
166144oveq2d 6312 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( 1 ... M
)  =  ( 1 ... ( # `  ran  H ) ) )
167 f1oeq2 5814 . . . . . . . . . . . . . . . . 17  |-  ( ( 1 ... M )  =  ( 1 ... ( # `  ran  H ) )  ->  (
f : ( 1 ... M ) -1-1-onto-> ran  H  <->  f : ( 1 ... ( # `  ran  H ) ) -1-1-onto-> ran  H ) )
168166, 167syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( f : ( 1 ... M ) -1-1-onto-> ran 
H  <->  f : ( 1 ... ( # `  ran  H ) ) -1-1-onto-> ran 
H ) )
169165, 168mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
f : ( 1 ... M ) -1-1-onto-> ran  H
)
170 f1ocnv 5834 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... M ) -1-1-onto-> ran  H  ->  `' f : ran  H -1-1-onto-> ( 1 ... M ) )
171169, 170syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  `' f : ran  H -1-1-onto-> ( 1 ... M ) )
17215ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  H : ( 1 ... M ) -1-1-onto-> ran  H )
173 f1oco 5844 . . . . . . . . . . . . . 14  |-  ( ( `' f : ran  H -1-1-onto-> ( 1 ... M )  /\  H : ( 1 ... M ) -1-1-onto-> ran 
H )  ->  ( `' f  o.  H
) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) )
174171, 172, 173syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( `' f  o.  H ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) )
175 ffn 5737 . . . . . . . . . . . . . . . . 17  |-  ( F : A --> B  ->  F  Fn  A )
176 dffn4 5807 . . . . . . . . . . . . . . . . 17  |-  ( F  Fn  A  <->  F : A -onto-> ran  F )
177175, 176sylib 196 . . . . . . . . . . . . . . . 16  |-  ( F : A --> B  ->  F : A -onto-> ran  F
)
178 fof 5801 . . . . . . . . . . . . . . . 16  |-  ( F : A -onto-> ran  F  ->  F : A --> ran  F
)
179160, 177, 1783syl 20 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  F : A --> ran  F
)
180 f1of 5822 . . . . . . . . . . . . . . . . 17  |-  ( f : ( 1 ... M ) -1-1-onto-> ran  H  ->  f : ( 1 ... M ) --> ran  H
)
181169, 180syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
f : ( 1 ... M ) --> ran 
H )
182113ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  ran  H  C_  A )
183181, 182fssd 5746 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
f : ( 1 ... M ) --> A )
184 fco 5747 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> ran  F  /\  f : ( 1 ... M ) --> A )  ->  ( F  o.  f ) : ( 1 ... M ) --> ran  F )
185179, 183, 184syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( F  o.  f
) : ( 1 ... M ) --> ran 
F )
186185ffvelrnda 6032 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  ( 1 ... M ) )  ->  ( ( F  o.  f ) `  x )  e.  ran  F )
187 f1ococnv2 5848 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f : ( 1 ... M ) -1-1-onto-> ran  H  ->  (
f  o.  `' f )  =  (  _I  |`  ran  H ) )
188169, 187syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( f  o.  `' f )  =  (  _I  |`  ran  H ) )
189188coeq1d 5174 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( ( f  o.  `' f )  o.  H )  =  ( (  _I  |`  ran  H
)  o.  H ) )
190 f1of 5822 . . . . . . . . . . . . . . . . . . . . 21  |-  ( H : ( 1 ... M ) -1-1-onto-> ran  H  ->  H : ( 1 ... M ) --> ran  H
)
191 fcoi2 5766 . . . . . . . . . . . . . . . . . . . . 21  |-  ( H : ( 1 ... M ) --> ran  H  ->  ( (  _I  |`  ran  H
)  o.  H )  =  H )
192172, 190, 1913syl 20 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( (  _I  |`  ran  H
)  o.  H )  =  H )
193189, 192eqtr2d 2499 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  H  =  ( (
f  o.  `' f )  o.  H ) )
194 coass 5532 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f  o.  `' f )  o.  H )  =  ( f  o.  ( `' f  o.  H ) )
195193, 194syl6eq 2514 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  H  =  ( f  o.  ( `' f  o.  H ) ) )
196195coeq2d 5175 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( F  o.  H
)  =  ( F  o.  ( f  o.  ( `' f  o.  H ) ) ) )
197 coass 5532 . . . . . . . . . . . . . . . . 17  |-  ( ( F  o.  f )  o.  ( `' f  o.  H ) )  =  ( F  o.  ( f  o.  ( `' f  o.  H
) ) )
198196, 197syl6eqr 2516 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( F  o.  H
)  =  ( ( F  o.  f )  o.  ( `' f  o.  H ) ) )
199198fveq1d 5874 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( ( F  o.  H ) `  k
)  =  ( ( ( F  o.  f
)  o.  ( `' f  o.  H ) ) `  k ) )
200199adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  k  e.  ( 1 ... M ) )  ->  ( ( F  o.  H ) `  k )  =  ( ( ( F  o.  f )  o.  ( `' f  o.  H
) ) `  k
) )
201 f1of 5822 . . . . . . . . . . . . . . . . 17  |-  ( `' f : ran  H -1-1-onto-> (
1 ... M )  ->  `' f : ran  H --> ( 1 ... M
) )
202169, 170, 2013syl 20 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  `' f : ran  H --> ( 1 ... M
) )
203172, 190syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  H : ( 1 ... M ) --> ran  H
)
204 fco 5747 . . . . . . . . . . . . . . . 16  |-  ( ( `' f : ran  H --> ( 1 ... M
)  /\  H :
( 1 ... M
) --> ran  H )  ->  ( `' f  o.  H ) : ( 1 ... M ) --> ( 1 ... M
) )
205202, 203, 204syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( `' f  o.  H ) : ( 1 ... M ) --> ( 1 ... M
) )
206 fvco3 5950 . . . . . . . . . . . . . . 15  |-  ( ( ( `' f  o.  H ) : ( 1 ... M ) --> ( 1 ... M
)  /\  k  e.  ( 1 ... M
) )  ->  (
( ( F  o.  f )  o.  ( `' f  o.  H
) ) `  k
)  =  ( ( F  o.  f ) `
 ( ( `' f  o.  H ) `
 k ) ) )
207205, 206sylan 471 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  k  e.  ( 1 ... M ) )  ->  ( ( ( F  o.  f )  o.  ( `' f  o.  H ) ) `
 k )  =  ( ( F  o.  f ) `  (
( `' f  o.  H ) `  k
) ) )
208200, 207eqtrd 2498 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  k  e.  ( 1 ... M ) )  ->  ( ( F  o.  H ) `  k )  =  ( ( F  o.  f
) `  ( ( `' f  o.  H
) `  k )
) )
209149, 156, 158, 159, 162, 174, 186, 208seqf1o 12151 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
(  seq 1 (  .+  ,  ( F  o.  H ) ) `  M )  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  M ) )
21063, 66, 3mndlid 16068 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  (  .0.  .+  x
)  =  x )
211146, 210sylan 471 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  B )  ->  (  .0.  .+  x
)  =  x )
21263, 66, 3mndrid 16069 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  ( x  .+  .0.  )  =  x )
213146, 212sylan 471 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  B )  ->  ( x  .+  .0.  )  =  x )
214146, 64syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  .0.  e.  B )
215 fdm 5741 . . . . . . . . . . . . . . . . 17  |-  ( H : ( 1 ... M ) --> A  ->  dom  H  =  ( 1 ... M ) )
21610, 11, 2153syl 20 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  H  =  ( 1 ... M ) )
217 eluzfz1 11718 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... M
) )
218 ne0i 3799 . . . . . . . . . . . . . . . . 17  |-  ( 1  e.  ( 1 ... M )  ->  (
1 ... M )  =/=  (/) )
21972, 217, 2183syl 20 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1 ... M
)  =/=  (/) )
220216, 219eqnetrd 2750 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  H  =/=  (/) )
221 dm0rn0 5229 . . . . . . . . . . . . . . . 16  |-  ( dom 
H  =  (/)  <->  ran  H  =  (/) )
222221necon3bii 2725 . . . . . . . . . . . . . . 15  |-  ( dom 
H  =/=  (/)  <->  ran  H  =/=  (/) )
223220, 222sylib 196 . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  H  =/=  (/) )
224223ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  ran  H  =/=  (/) )
225115adantrr 716 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  ran  H  C_  ( m ... n ) )
226 simprl 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  A  =  ( m ... n ) )
227226eleq2d 2527 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( x  e.  A  <->  x  e.  ( m ... n ) ) )
228227biimpar 485 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  ( m ... n ) )  ->  x  e.  A )
229160ffvelrnda 6032 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  A )  ->  ( F `  x
)  e.  B )
230228, 229syldan 470 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  ( m ... n ) )  -> 
( F `  x
)  e.  B )
231226difeq1d 3617 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( A  \  ran  H )  =  ( ( m ... n ) 
\  ran  H )
)
232231eleq2d 2527 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
( x  e.  ( A  \  ran  H
)  <->  x  e.  (
( m ... n
)  \  ran  H ) ) )
233232biimpar 485 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  ( (
m ... n )  \  ran  H ) )  ->  x  e.  ( A  \  ran  H ) )
234 simpll 753 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  ->  ph )
235234, 53sylan 471 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  ( A  \  ran  H ) )  ->  ( F `  x )  =  .0.  )
236233, 235syldan 470 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  x  e.  ( (
m ... n )  \  ran  H ) )  -> 
( F `  x
)  =  .0.  )
237 f1of 5822 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... ( # `  ran  H ) ) -1-1-onto-> ran  H  ->  f : ( 1 ... ( # `  ran  H ) ) --> ran  H
)
238163, 164, 2373syl 20 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
f : ( 1 ... ( # `  ran  H ) ) --> ran  H
)
239 fvco3 5950 . . . . . . . . . . . . . 14  |-  ( ( f : ( 1 ... ( # `  ran  H ) ) --> ran  H  /\  y  e.  (
1 ... ( # `  ran  H ) ) )  -> 
( ( F  o.  f ) `  y
)  =  ( F `
 ( f `  y ) ) )
240238, 239sylan 471 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  /\  y  e.  ( 1 ... ( # `  ran  H ) ) )  -> 
( ( F  o.  f ) `  y
)  =  ( F `
 ( f `  y ) ) )
241211, 213, 149, 214, 163, 224, 225, 230, 236, 240seqcoll2 12517 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
(  seq m (  .+  ,  F ) `  n
)  =  (  seq 1 (  .+  , 
( F  o.  f
) ) `  ( # `
 ran  H )
) )
242145, 209, 2413eqtr4d 2508 . . . . . . . . . . 11  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( A  =  ( m ... n )  /\  f  Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
) ) )  -> 
(  seq 1 (  .+  ,  ( F  o.  H ) ) `  M )  =  (  seq m (  .+  ,  F ) `  n
) )
243242expr 615 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  -> 
( f  Isom  <  ,  <  ( ( 1 ... ( # `  ran  H ) ) ,  ran  H )  ->  (  seq 1 (  .+  , 
( F  o.  H
) ) `  M
)  =  (  seq m (  .+  ,  F ) `  n
) ) )
244243exlimdv 1725 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  -> 
( E. f  f 
Isom  <  ,  <  (
( 1 ... ( # `
 ran  H )
) ,  ran  H
)  ->  (  seq 1 (  .+  , 
( F  o.  H
) ) `  M
)  =  (  seq m (  .+  ,  F ) `  n
) ) )
245136, 244mpd 15 . . . . . . . 8  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  -> 
(  seq 1 (  .+  ,  ( F  o.  H ) ) `  M )  =  (  seq m (  .+  ,  F ) `  n
) )
246111, 245eqtr4d 2501 . . . . . . 7  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  A  =  ( m ... n ) )  -> 
( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) )
247246ex 434 . . . . . 6  |-  ( (
ph  /\  W  =/=  (/) )  ->  ( A  =  ( m ... n )  ->  ( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) ) )
248247rexlimdvw 2952 . . . . 5  |-  ( (
ph  /\  W  =/=  (/) )  ->  ( E. n  e.  ZZ  A  =  ( m ... n )  ->  ( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) ) )
249248rexlimdvw 2952 . . . 4  |-  ( (
ph  /\  W  =/=  (/) )  ->  ( E. m  e.  ZZ  E. n  e.  ZZ  A  =  ( m ... n )  ->  ( G  gsumg  F )  =  (  seq 1
(  .+  ,  ( F  o.  H )
) `  M )
) )
25083, 249syl5bi 217 . . 3  |-  ( (
ph  /\  W  =/=  (/) )  ->  ( A  e.  ran  ...  ->  ( G 
gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) ) )
251 suppssdm 6930 . . . . . . . . . . 11  |-  ( ( F  o.  H ) supp 
.0.  )  C_  dom  ( F  o.  H
)
25232, 251eqsstri 3529 . . . . . . . . . 10  |-  W  C_  dom  ( F  o.  H
)
253 fdm 5741 . . . . . . . . . . 11  |-  ( ( F  o.  H ) : ( 1 ... M ) --> B  ->  dom  ( F  o.  H
)  =  ( 1 ... M ) )
25430, 253syl 16 . . . . . . . . . 10  |-  ( ph  ->  dom  ( F  o.  H )  =  ( 1 ... M ) )
255252, 254syl5sseq 3547 . . . . . . . . 9  |-  ( ph  ->  W  C_  ( 1 ... M ) )
256 fzssuz 11750 . . . . . . . . . . 11  |-  ( 1 ... M )  C_  ( ZZ>= `  1 )
257256, 71sseqtr4i 3532 . . . . . . . . . 10  |-  ( 1 ... M )  C_  NN
258 nnssre 10560 . . . . . . . . . 10  |-  NN  C_  RR
259257, 258sstri 3508 . . . . . . . . 9  |-  ( 1 ... M )  C_  RR
260255, 259syl6ss 3511 . . . . . . . 8  |-  ( ph  ->  W  C_  RR )
261 soss 4827 . . . . . . . 8  |-  ( W 
C_  RR  ->  (  < 
Or  RR  ->  <  Or  W ) )
262260, 122, 261mpisyl 18 . . . . . . 7  |-  ( ph  ->  <  Or  W )
263 ssfi 7759 . . . . . . . 8  |-  ( ( ( 1 ... M
)  e.  Fin  /\  W  C_  ( 1 ... M ) )  ->  W  e.  Fin )
264125, 255, 263sylancr 663 . . . . . . 7  |-  ( ph  ->  W  e.  Fin )
265 fz1iso 12515 . . . . . . 7  |-  ( (  <  Or  W  /\  W  e.  Fin )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) )
266262, 264, 265syl2anc 661 . . . . . 6  |-  ( ph  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) )
267266ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  -.  A  e.  ran  ... )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) )
26863, 3, 66, 153, 1, 2, 7, 150, 70, 10, 51, 32gsumval3lem2 17037 . . . . . . . 8  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  ( H  o.  f
) ) ) `  ( # `  W ) ) )
2691ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  G  e.  Mnd )
270269, 210sylan 471 . . . . . . . . 9  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  /\  x  e.  B )  ->  (  .0.  .+  x
)  =  x )
271269, 212sylan 471 . . . . . . . . 9  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  /\  x  e.  B )  ->  ( x  .+  .0.  )  =  x )
272269, 148sylan 471 . . . . . . . . 9  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
273269, 64syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  .0.  e.  B )
274 simprr 757 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
f  Isom  <  ,  <  ( ( 1 ... ( # `
 W ) ) ,  W ) )
275 simplr 755 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  W  =/=  (/) )
276255ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  W  C_  ( 1 ... M ) )
27730ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( F  o.  H
) : ( 1 ... M ) --> B )
278277ffvelrnda 6032 . . . . . . . . 9  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  /\  x  e.  ( 1 ... M ) )  ->  ( ( F  o.  H ) `  x )  e.  B
)
27933a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( ( F  o.  H ) supp  .0.  )  C_  W )
28035a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( 1 ... M
)  e.  _V )
28138a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  ->  .0.  e.  _V )
282277, 279, 280, 281suppssr 6949 . . . . . . . . 9  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  /\  x  e.  ( (
1 ... M )  \  W ) )  -> 
( ( F  o.  H ) `  x
)  =  .0.  )
283 coass 5532 . . . . . . . . . . 11  |-  ( ( F  o.  H )  o.  f )  =  ( F  o.  ( H  o.  f )
)
284283fveq1i 5873 . . . . . . . . . 10  |-  ( ( ( F  o.  H
)  o.  f ) `
 y )  =  ( ( F  o.  ( H  o.  f
) ) `  y
)
285 isof1o 6222 . . . . . . . . . . . 12  |-  ( f 
Isom  <  ,  <  (
( 1 ... ( # `
 W ) ) ,  W )  -> 
f : ( 1 ... ( # `  W
) ) -1-1-onto-> W )
286 f1of 5822 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  W
) ) -1-1-onto-> W  ->  f :
( 1 ... ( # `
 W ) ) --> W )
287274, 285, 2863syl 20 . . . . . . . . . . 11  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
f : ( 1 ... ( # `  W
) ) --> W )
288 fvco3 5950 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  W
) ) --> W  /\  y  e.  ( 1 ... ( # `  W
) ) )  -> 
( ( ( F  o.  H )  o.  f ) `  y
)  =  ( ( F  o.  H ) `
 ( f `  y ) ) )
289287, 288sylan 471 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  /\  y  e.  ( 1 ... ( # `  W
) ) )  -> 
( ( ( F  o.  H )  o.  f ) `  y
)  =  ( ( F  o.  H ) `
 ( f `  y ) ) )
290284, 289syl5eqr 2512 . . . . . . . . 9  |-  ( ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  /\  y  e.  ( 1 ... ( # `  W
) ) )  -> 
( ( F  o.  ( H  o.  f
) ) `  y
)  =  ( ( F  o.  H ) `
 ( f `  y ) ) )
291270, 271, 272, 273, 274, 275, 276, 278, 282, 290seqcoll2 12517 . . . . . . . 8  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
(  seq 1 (  .+  ,  ( F  o.  H ) ) `  M )  =  (  seq 1 (  .+  ,  ( F  o.  ( H  o.  f
) ) ) `  ( # `  W ) ) )
292268, 291eqtr4d 2501 . . . . . . 7  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  ( -.  A  e.  ran  ... 
/\  f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
) ) )  -> 
( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) )
293292expr 615 . . . . . 6  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  -.  A  e.  ran  ... )  ->  ( f  Isom  <  ,  <  ( ( 1 ... ( # `  W
) ) ,  W
)  ->  ( G  gsumg  F )  =  (  seq 1 (  .+  , 
( F  o.  H
) ) `  M
) ) )
294293exlimdv 1725 . . . . 5  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  -.  A  e.  ran  ... )  ->  ( E. f  f 
Isom  <  ,  <  (
( 1 ... ( # `
 W ) ) ,  W )  -> 
( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) ) )
295267, 294mpd 15 . . . 4  |-  ( ( ( ph  /\  W  =/=  (/) )  /\  -.  A  e.  ran  ... )  ->  ( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) )
296295ex 434 . . 3  |-  ( (
ph  /\  W  =/=  (/) )  ->  ( -.  A  e.  ran  ...  ->  ( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) ) )
297250, 296pm2.61d 158 . 2  |-  ( (
ph  /\  W  =/=  (/) )  ->  ( G  gsumg  F )  =  (  seq 1 (  .+  , 
( F  o.  H
) ) `  M
) )
29879, 297pm2.61dane 2775 1  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq 1 (  .+  ,  ( F  o.  H ) ) `  M ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395   E.wex 1613    e. wcel 1819    =/= wne 2652   E.wrex 2808   _Vcvv 3109    \ cdif 3468    C_ wss 3471   (/)c0 3793   ~Pcpw 4015   {csn 4032   class class class wbr 4456    |-> cmpt 4515    _I cid 4799    Or wor 4808    X. cxp 5006   `'ccnv 5007   dom cdm 5008   ran crn 5009    |` cres 5010    o. ccom 5012   Rel wrel 5013    Fn wfn 5589   -->wf 5590   -1-1->wf1 5591   -onto->wfo 5592   -1-1-onto->wf1o 5593   ` cfv 5594    Isom wiso 5595  (class class class)co 6296   supp csupp 6917    ~~ cen 7532   Fincfn 7535   RRcr 9508   1c1 9510    < clt 9645   NNcn 10556   NN0cn0 10816   ZZcz 10885   ZZ>=cuz 11106   ...cfz 11697    seqcseq 12110   #chash 12408   Basecbs 14644   +g cplusg 14712   0gc0g 14857    gsumg cgsu 14858   Mndcmnd 16046  Cntzccntz 16480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-oi 7953  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-fzo 11822  df-seq 12111  df-hash 12409  df-0g 14859  df-gsum 14860  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-cntz 16482
This theorem is referenced by:  gsumzres  17041  gsumzcl2  17042  gsumzf1o  17044  gsumzaddlem  17061  gsumconst  17081  gsumzmhm  17084  gsumzoppg  17094  gsumfsum  18611  wilthlem3  23470
  Copyright terms: Public domain W3C validator