MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval2 Structured version   Unicode version

Theorem gsumval2 16034
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval2.b  |-  B  =  ( Base `  G
)
gsumval2.p  |-  .+  =  ( +g  `  G )
gsumval2.g  |-  ( ph  ->  G  e.  V )
gsumval2.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
gsumval2.f  |-  ( ph  ->  F : ( M ... N ) --> B )
Assertion
Ref Expression
gsumval2  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )

Proof of Theorem gsumval2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval2.b . . . 4  |-  B  =  ( Base `  G
)
2 eqid 2457 . . . 4  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 gsumval2.p . . . 4  |-  .+  =  ( +g  `  G )
4 eqid 2457 . . . 4  |-  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  =  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }
5 gsumval2.g . . . . 5  |-  ( ph  ->  G  e.  V )
65adantr 465 . . . 4  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  G  e.  V )
7 ovex 6324 . . . . 5  |-  ( M ... N )  e. 
_V
87a1i 11 . . . 4  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  -> 
( M ... N
)  e.  _V )
9 gsumval2.f . . . . . . 7  |-  ( ph  ->  F : ( M ... N ) --> B )
10 ffn 5737 . . . . . . 7  |-  ( F : ( M ... N ) --> B  ->  F  Fn  ( M ... N ) )
119, 10syl 16 . . . . . 6  |-  ( ph  ->  F  Fn  ( M ... N ) )
1211adantr 465 . . . . 5  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  F  Fn  ( M ... N ) )
13 simpr 461 . . . . 5  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  ran  F  C_  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) } )
14 df-f 5598 . . . . 5  |-  ( F : ( M ... N ) --> { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  <->  ( F  Fn  ( M ... N )  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } ) )
1512, 13, 14sylanbrc 664 . . . 4  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  F : ( M ... N ) --> { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) } )
161, 2, 3, 4, 6, 8, 15gsumval1 16031 . . 3  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  -> 
( G  gsumg  F )  =  ( 0g `  G ) )
17 simpl 457 . . . . . . . . 9  |-  ( ( ( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y )  ->  ( x  .+  y )  =  y )
1817ralimi 2850 . . . . . . . 8  |-  ( A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y )  ->  A. y  e.  B  ( x  .+  y )  =  y )
1918a1i 11 . . . . . . 7  |-  ( x  e.  B  ->  ( A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y )  ->  A. y  e.  B  ( x  .+  y )  =  y ) )
2019ss2rabi 3578 . . . . . 6  |-  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  C_  { x  e.  B  |  A. y  e.  B  (
x  .+  y )  =  y }
21 fvex 5882 . . . . . . . 8  |-  ( 0g
`  G )  e. 
_V
2221snid 4060 . . . . . . 7  |-  ( 0g
`  G )  e. 
{ ( 0g `  G ) }
23 fdm 5741 . . . . . . . . . . . . . 14  |-  ( F : ( M ... N ) --> B  ->  dom  F  =  ( M ... N ) )
249, 23syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  F  =  ( M ... N ) )
25 gsumval2.n . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
26 eluzfz1 11718 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
27 ne0i 3799 . . . . . . . . . . . . . 14  |-  ( M  e.  ( M ... N )  ->  ( M ... N )  =/=  (/) )
2825, 26, 273syl 20 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M ... N
)  =/=  (/) )
2924, 28eqnetrd 2750 . . . . . . . . . . . 12  |-  ( ph  ->  dom  F  =/=  (/) )
30 dm0rn0 5229 . . . . . . . . . . . . 13  |-  ( dom 
F  =  (/)  <->  ran  F  =  (/) )
3130necon3bii 2725 . . . . . . . . . . . 12  |-  ( dom 
F  =/=  (/)  <->  ran  F  =/=  (/) )
3229, 31sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  ran  F  =/=  (/) )
3332adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  ran  F  =/=  (/) )
34 ssn0 3827 . . . . . . . . . 10  |-  ( ( ran  F  C_  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  /\  ran  F  =/=  (/) )  ->  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  =/=  (/) )
3513, 33, 34syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }  =/=  (/) )
3635neneqd 2659 . . . . . . . 8  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  -.  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }  =  (/) )
371, 2, 3, 4mgmidsssn0 16023 . . . . . . . . . . 11  |-  ( G  e.  V  ->  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  C_  { ( 0g `  G ) } )
385, 37syl 16 . . . . . . . . . 10  |-  ( ph  ->  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }  C_  { ( 0g `  G ) } )
39 sssn 4190 . . . . . . . . . 10  |-  ( { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }  C_  { ( 0g `  G ) }  <->  ( { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  =  (/)  \/  {
x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }  =  {
( 0g `  G
) } ) )
4038, 39sylib 196 . . . . . . . . 9  |-  ( ph  ->  ( { x  e.  B  |  A. y  e.  B  ( (
x  .+  y )  =  y  /\  (
y  .+  x )  =  y ) }  =  (/)  \/  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  =  { ( 0g `  G ) } ) )
4140orcanai 913 . . . . . . . 8  |-  ( (
ph  /\  -.  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  =  (/) )  ->  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }  =  {
( 0g `  G
) } )
4236, 41syldan 470 . . . . . . 7  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }  =  {
( 0g `  G
) } )
4322, 42syl5eleqr 2552 . . . . . 6  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  -> 
( 0g `  G
)  e.  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) } )
4420, 43sseldi 3497 . . . . 5  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  -> 
( 0g `  G
)  e.  { x  e.  B  |  A. y  e.  B  (
x  .+  y )  =  y } )
45 oveq1 6303 . . . . . . . . 9  |-  ( x  =  ( 0g `  G )  ->  (
x  .+  y )  =  ( ( 0g
`  G )  .+  y ) )
4645eqeq1d 2459 . . . . . . . 8  |-  ( x  =  ( 0g `  G )  ->  (
( x  .+  y
)  =  y  <->  ( ( 0g `  G )  .+  y )  =  y ) )
4746ralbidv 2896 . . . . . . 7  |-  ( x  =  ( 0g `  G )  ->  ( A. y  e.  B  ( x  .+  y )  =  y  <->  A. y  e.  B  ( ( 0g `  G )  .+  y )  =  y ) )
4847elrab 3257 . . . . . 6  |-  ( ( 0g `  G )  e.  { x  e.  B  |  A. y  e.  B  ( x  .+  y )  =  y }  <->  ( ( 0g
`  G )  e.  B  /\  A. y  e.  B  ( ( 0g `  G )  .+  y )  =  y ) )
49 oveq2 6304 . . . . . . . 8  |-  ( y  =  ( 0g `  G )  ->  (
( 0g `  G
)  .+  y )  =  ( ( 0g
`  G )  .+  ( 0g `  G ) ) )
50 id 22 . . . . . . . 8  |-  ( y  =  ( 0g `  G )  ->  y  =  ( 0g `  G ) )
5149, 50eqeq12d 2479 . . . . . . 7  |-  ( y  =  ( 0g `  G )  ->  (
( ( 0g `  G )  .+  y
)  =  y  <->  ( ( 0g `  G )  .+  ( 0g `  G ) )  =  ( 0g
`  G ) ) )
5251rspcva 3208 . . . . . 6  |-  ( ( ( 0g `  G
)  e.  B  /\  A. y  e.  B  ( ( 0g `  G
)  .+  y )  =  y )  -> 
( ( 0g `  G )  .+  ( 0g `  G ) )  =  ( 0g `  G ) )
5348, 52sylbi 195 . . . . 5  |-  ( ( 0g `  G )  e.  { x  e.  B  |  A. y  e.  B  ( x  .+  y )  =  y }  ->  ( ( 0g `  G )  .+  ( 0g `  G ) )  =  ( 0g
`  G ) )
5444, 53syl 16 . . . 4  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  -> 
( ( 0g `  G )  .+  ( 0g `  G ) )  =  ( 0g `  G ) )
5525adantr 465 . . . 4  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  N  e.  ( ZZ>= `  M ) )
5638ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  ran  F 
C_  { x  e.  B  |  A. y  e.  B  ( (
x  .+  y )  =  y  /\  (
y  .+  x )  =  y ) } )  /\  z  e.  ( M ... N
) )  ->  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  C_  { ( 0g `  G ) } )
5715ffvelrnda 6032 . . . . . 6  |-  ( ( ( ph  /\  ran  F 
C_  { x  e.  B  |  A. y  e.  B  ( (
x  .+  y )  =  y  /\  (
y  .+  x )  =  y ) } )  /\  z  e.  ( M ... N
) )  ->  ( F `  z )  e.  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )
5856, 57sseldd 3500 . . . . 5  |-  ( ( ( ph  /\  ran  F 
C_  { x  e.  B  |  A. y  e.  B  ( (
x  .+  y )  =  y  /\  (
y  .+  x )  =  y ) } )  /\  z  e.  ( M ... N
) )  ->  ( F `  z )  e.  { ( 0g `  G ) } )
59 elsni 4057 . . . . 5  |-  ( ( F `  z )  e.  { ( 0g
`  G ) }  ->  ( F `  z )  =  ( 0g `  G ) )
6058, 59syl 16 . . . 4  |-  ( ( ( ph  /\  ran  F 
C_  { x  e.  B  |  A. y  e.  B  ( (
x  .+  y )  =  y  /\  (
y  .+  x )  =  y ) } )  /\  z  e.  ( M ... N
) )  ->  ( F `  z )  =  ( 0g `  G ) )
6154, 55, 60seqid3 12154 . . 3  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  -> 
(  seq M (  .+  ,  F ) `  N
)  =  ( 0g
`  G ) )
6216, 61eqtr4d 2501 . 2  |-  ( (
ph  /\  ran  F  C_  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  -> 
( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )
635adantr 465 . . 3  |-  ( (
ph  /\  -.  ran  F  C_ 
{ x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  G  e.  V )
6425adantr 465 . . 3  |-  ( (
ph  /\  -.  ran  F  C_ 
{ x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  N  e.  ( ZZ>= `  M ) )
659adantr 465 . . 3  |-  ( (
ph  /\  -.  ran  F  C_ 
{ x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  F : ( M ... N ) --> B )
66 simpr 461 . . 3  |-  ( (
ph  /\  -.  ran  F  C_ 
{ x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  ->  -.  ran  F  C_  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) } )
671, 3, 63, 64, 65, 4, 66gsumval2a 16033 . 2  |-  ( (
ph  /\  -.  ran  F  C_ 
{ x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) } )  -> 
( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )
6862, 67pm2.61dan 791 1  |-  ( ph  ->  ( G  gsumg  F )  =  (  seq M (  .+  ,  F ) `  N
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   {crab 2811   _Vcvv 3109    C_ wss 3471   (/)c0 3793   {csn 4032   dom cdm 5008   ran crn 5009    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6296   ZZ>=cuz 11106   ...cfz 11697    seqcseq 12110   Basecbs 14644   +g cplusg 14712   0gc0g 14857    gsumg cgsu 14858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-seq 12111  df-0g 14859  df-gsum 14860
This theorem is referenced by:  gsumprval  16035  gsumwsubmcl  16133  gsumws1  16134  gsumccat  16136  gsumwmhm  16140  gsumval3OLD  17035  gsumval3  17038  gsummptfzcl  17123  gsumncl  28689  gsumnunsn  28690
  Copyright terms: Public domain W3C validator