MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumspl Structured version   Unicode version

Theorem gsumspl 15828
Description: The primary purpose of the splice construction is to enable local rewrites. Thus, in any monoidal valuation, if a splice does not cause a local change it does not cause a global change. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Hypotheses
Ref Expression
gsumspl.b  |-  B  =  ( Base `  M
)
gsumspl.m  |-  ( ph  ->  M  e.  Mnd )
gsumspl.s  |-  ( ph  ->  S  e. Word  B )
gsumspl.f  |-  ( ph  ->  F  e.  ( 0 ... T ) )
gsumspl.t  |-  ( ph  ->  T  e.  ( 0 ... ( # `  S
) ) )
gsumspl.x  |-  ( ph  ->  X  e. Word  B )
gsumspl.y  |-  ( ph  ->  Y  e. Word  B )
gsumspl.eq  |-  ( ph  ->  ( M  gsumg  X )  =  ( M  gsumg  Y ) )
Assertion
Ref Expression
gsumspl  |-  ( ph  ->  ( M  gsumg  ( S splice  <. F ,  T ,  X >. ) )  =  ( M 
gsumg  ( S splice  <. F ,  T ,  Y >. ) ) )

Proof of Theorem gsumspl
StepHypRef Expression
1 gsumspl.eq . . . 4  |-  ( ph  ->  ( M  gsumg  X )  =  ( M  gsumg  Y ) )
21oveq2d 6291 . . 3  |-  ( ph  ->  ( ( M  gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M
) ( M  gsumg  X ) )  =  ( ( M  gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M ) ( M  gsumg  Y ) ) )
32oveq1d 6290 . 2  |-  ( ph  ->  ( ( ( M 
gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M ) ( M  gsumg  X ) ) ( +g  `  M ) ( M  gsumg  ( S substr  <. T , 
( # `  S )
>. ) ) )  =  ( ( ( M 
gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M ) ( M  gsumg  Y ) ) ( +g  `  M ) ( M  gsumg  ( S substr  <. T , 
( # `  S )
>. ) ) ) )
4 gsumspl.s . . . . 5  |-  ( ph  ->  S  e. Word  B )
5 gsumspl.f . . . . 5  |-  ( ph  ->  F  e.  ( 0 ... T ) )
6 gsumspl.t . . . . 5  |-  ( ph  ->  T  e.  ( 0 ... ( # `  S
) ) )
7 gsumspl.x . . . . 5  |-  ( ph  ->  X  e. Word  B )
8 splval 12677 . . . . 5  |-  ( ( S  e. Word  B  /\  ( F  e.  (
0 ... T )  /\  T  e.  ( 0 ... ( # `  S
) )  /\  X  e. Word  B ) )  -> 
( S splice  <. F ,  T ,  X >. )  =  ( ( ( S substr  <. 0 ,  F >. ) concat  X ) concat  ( S substr  <. T ,  (
# `  S ) >. ) ) )
94, 5, 6, 7, 8syl13anc 1225 . . . 4  |-  ( ph  ->  ( S splice  <. F ,  T ,  X >. )  =  ( ( ( S substr  <. 0 ,  F >. ) concat  X ) concat  ( S substr  <. T ,  (
# `  S ) >. ) ) )
109oveq2d 6291 . . 3  |-  ( ph  ->  ( M  gsumg  ( S splice  <. F ,  T ,  X >. ) )  =  ( M 
gsumg  ( ( ( S substr  <. 0 ,  F >. ) concat  X ) concat  ( S substr  <. T , 
( # `  S )
>. ) ) ) )
11 gsumspl.m . . . 4  |-  ( ph  ->  M  e.  Mnd )
12 swrdcl 12596 . . . . . 6  |-  ( S  e. Word  B  ->  ( S substr  <. 0 ,  F >. )  e. Word  B )
134, 12syl 16 . . . . 5  |-  ( ph  ->  ( S substr  <. 0 ,  F >. )  e. Word  B
)
14 ccatcl 12545 . . . . 5  |-  ( ( ( S substr  <. 0 ,  F >. )  e. Word  B  /\  X  e. Word  B )  ->  ( ( S substr  <. 0 ,  F >. ) concat  X )  e. Word  B
)
1513, 7, 14syl2anc 661 . . . 4  |-  ( ph  ->  ( ( S substr  <. 0 ,  F >. ) concat  X )  e. Word  B )
16 swrdcl 12596 . . . . 5  |-  ( S  e. Word  B  ->  ( S substr  <. T ,  (
# `  S ) >. )  e. Word  B )
174, 16syl 16 . . . 4  |-  ( ph  ->  ( S substr  <. T , 
( # `  S )
>. )  e. Word  B )
18 gsumspl.b . . . . 5  |-  B  =  ( Base `  M
)
19 eqid 2460 . . . . 5  |-  ( +g  `  M )  =  ( +g  `  M )
2018, 19gsumccat 15825 . . . 4  |-  ( ( M  e.  Mnd  /\  ( ( S substr  <. 0 ,  F >. ) concat  X )  e. Word  B  /\  ( S substr  <. T ,  ( # `  S ) >. )  e. Word  B )  ->  ( M  gsumg  ( ( ( S substr  <. 0 ,  F >. ) concat  X ) concat  ( S substr  <. T , 
( # `  S )
>. ) ) )  =  ( ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  X ) ) ( +g  `  M
) ( M  gsumg  ( S substr  <. T ,  ( # `  S ) >. )
) ) )
2111, 15, 17, 20syl3anc 1223 . . 3  |-  ( ph  ->  ( M  gsumg  ( ( ( S substr  <. 0 ,  F >. ) concat  X ) concat  ( S substr  <. T , 
( # `  S )
>. ) ) )  =  ( ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  X ) ) ( +g  `  M
) ( M  gsumg  ( S substr  <. T ,  ( # `  S ) >. )
) ) )
2218, 19gsumccat 15825 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( S substr  <. 0 ,  F >. )  e. Word  B  /\  X  e. Word  B )  ->  ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  X ) )  =  ( ( M 
gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M ) ( M  gsumg  X ) ) )
2311, 13, 7, 22syl3anc 1223 . . . 4  |-  ( ph  ->  ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  X )
)  =  ( ( M  gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M ) ( M  gsumg  X ) ) )
2423oveq1d 6290 . . 3  |-  ( ph  ->  ( ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  X ) ) ( +g  `  M
) ( M  gsumg  ( S substr  <. T ,  ( # `  S ) >. )
) )  =  ( ( ( M  gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M
) ( M  gsumg  X ) ) ( +g  `  M
) ( M  gsumg  ( S substr  <. T ,  ( # `  S ) >. )
) ) )
2510, 21, 243eqtrd 2505 . 2  |-  ( ph  ->  ( M  gsumg  ( S splice  <. F ,  T ,  X >. ) )  =  ( ( ( M  gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M ) ( M  gsumg  X ) ) ( +g  `  M ) ( M  gsumg  ( S substr  <. T , 
( # `  S )
>. ) ) ) )
26 gsumspl.y . . . . 5  |-  ( ph  ->  Y  e. Word  B )
27 splval 12677 . . . . 5  |-  ( ( S  e. Word  B  /\  ( F  e.  (
0 ... T )  /\  T  e.  ( 0 ... ( # `  S
) )  /\  Y  e. Word  B ) )  -> 
( S splice  <. F ,  T ,  Y >. )  =  ( ( ( S substr  <. 0 ,  F >. ) concat  Y ) concat  ( S substr  <. T ,  (
# `  S ) >. ) ) )
284, 5, 6, 26, 27syl13anc 1225 . . . 4  |-  ( ph  ->  ( S splice  <. F ,  T ,  Y >. )  =  ( ( ( S substr  <. 0 ,  F >. ) concat  Y ) concat  ( S substr  <. T ,  (
# `  S ) >. ) ) )
2928oveq2d 6291 . . 3  |-  ( ph  ->  ( M  gsumg  ( S splice  <. F ,  T ,  Y >. ) )  =  ( M 
gsumg  ( ( ( S substr  <. 0 ,  F >. ) concat  Y ) concat  ( S substr  <. T , 
( # `  S )
>. ) ) ) )
30 ccatcl 12545 . . . . 5  |-  ( ( ( S substr  <. 0 ,  F >. )  e. Word  B  /\  Y  e. Word  B )  ->  ( ( S substr  <. 0 ,  F >. ) concat  Y )  e. Word  B
)
3113, 26, 30syl2anc 661 . . . 4  |-  ( ph  ->  ( ( S substr  <. 0 ,  F >. ) concat  Y )  e. Word  B )
3218, 19gsumccat 15825 . . . 4  |-  ( ( M  e.  Mnd  /\  ( ( S substr  <. 0 ,  F >. ) concat  Y )  e. Word  B  /\  ( S substr  <. T ,  ( # `  S ) >. )  e. Word  B )  ->  ( M  gsumg  ( ( ( S substr  <. 0 ,  F >. ) concat  Y ) concat  ( S substr  <. T , 
( # `  S )
>. ) ) )  =  ( ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  Y ) ) ( +g  `  M
) ( M  gsumg  ( S substr  <. T ,  ( # `  S ) >. )
) ) )
3311, 31, 17, 32syl3anc 1223 . . 3  |-  ( ph  ->  ( M  gsumg  ( ( ( S substr  <. 0 ,  F >. ) concat  Y ) concat  ( S substr  <. T , 
( # `  S )
>. ) ) )  =  ( ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  Y ) ) ( +g  `  M
) ( M  gsumg  ( S substr  <. T ,  ( # `  S ) >. )
) ) )
3418, 19gsumccat 15825 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( S substr  <. 0 ,  F >. )  e. Word  B  /\  Y  e. Word  B )  ->  ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  Y ) )  =  ( ( M 
gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M ) ( M  gsumg  Y ) ) )
3511, 13, 26, 34syl3anc 1223 . . . 4  |-  ( ph  ->  ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  Y )
)  =  ( ( M  gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M ) ( M  gsumg  Y ) ) )
3635oveq1d 6290 . . 3  |-  ( ph  ->  ( ( M  gsumg  ( ( S substr  <. 0 ,  F >. ) concat  Y ) ) ( +g  `  M
) ( M  gsumg  ( S substr  <. T ,  ( # `  S ) >. )
) )  =  ( ( ( M  gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M
) ( M  gsumg  Y ) ) ( +g  `  M
) ( M  gsumg  ( S substr  <. T ,  ( # `  S ) >. )
) ) )
3729, 33, 363eqtrd 2505 . 2  |-  ( ph  ->  ( M  gsumg  ( S splice  <. F ,  T ,  Y >. ) )  =  ( ( ( M  gsumg  ( S substr  <. 0 ,  F >. ) ) ( +g  `  M ) ( M  gsumg  Y ) ) ( +g  `  M ) ( M  gsumg  ( S substr  <. T , 
( # `  S )
>. ) ) ) )
383, 25, 373eqtr4d 2511 1  |-  ( ph  ->  ( M  gsumg  ( S splice  <. F ,  T ,  X >. ) )  =  ( M 
gsumg  ( S splice  <. F ,  T ,  Y >. ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1374    e. wcel 1762   <.cop 4026   <.cotp 4028   ` cfv 5579  (class class class)co 6275   0cc0 9481   ...cfz 11661   #chash 12360  Word cword 12487   concat cconcat 12489   substr csubstr 12491   splice csplice 12492   Basecbs 14479   +g cplusg 14544    gsumg cgsu 14685   Mndcmnd 15715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-ot 4029  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-card 8309  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-n0 10785  df-z 10854  df-uz 11072  df-fz 11662  df-fzo 11782  df-seq 12064  df-hash 12361  df-word 12495  df-concat 12497  df-substr 12499  df-splice 12500  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-0g 14686  df-gsum 14687  df-mnd 15721  df-submnd 15771
This theorem is referenced by:  psgnunilem2  16309
  Copyright terms: Public domain W3C validator