MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumptOLD Structured version   Unicode version

Theorem gsumptOLD 16862
Description: Sum of a family that is nonzero at at most one point. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) Obsolete version of gsumpt 16861 as of 6-Jun-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
gsumptOLD.b  |-  B  =  ( Base `  G
)
gsumptOLD.z  |-  .0.  =  ( 0g `  G )
gsumptOLD.g  |-  ( ph  ->  G  e.  Mnd )
gsumptOLD.a  |-  ( ph  ->  A  e.  V )
gsumptOLD.x  |-  ( ph  ->  X  e.  A )
gsumptOLD.f  |-  ( ph  ->  F : A --> B )
gsumptOLD.s  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  { X } )
Assertion
Ref Expression
gsumptOLD  |-  ( ph  ->  ( G  gsumg  F )  =  ( F `  X ) )

Proof of Theorem gsumptOLD
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 gsumptOLD.f . . . 4  |-  ( ph  ->  F : A --> B )
2 gsumptOLD.x . . . . 5  |-  ( ph  ->  X  e.  A )
32snssd 4178 . . . 4  |-  ( ph  ->  { X }  C_  A )
41, 3feqresmpt 5928 . . 3  |-  ( ph  ->  ( F  |`  { X } )  =  ( a  e.  { X }  |->  ( F `  a ) ) )
54oveq2d 6311 . 2  |-  ( ph  ->  ( G  gsumg  ( F  |`  { X } ) )  =  ( G  gsumg  ( a  e.  { X }  |->  ( F `
 a ) ) ) )
6 gsumptOLD.b . . 3  |-  B  =  ( Base `  G
)
7 gsumptOLD.z . . 3  |-  .0.  =  ( 0g `  G )
8 eqid 2467 . . 3  |-  (Cntz `  G )  =  (Cntz `  G )
9 gsumptOLD.g . . 3  |-  ( ph  ->  G  e.  Mnd )
10 gsumptOLD.a . . 3  |-  ( ph  ->  A  e.  V )
111, 2ffvelrnd 6033 . . . . . . . 8  |-  ( ph  ->  ( F `  X
)  e.  B )
12 eqidd 2468 . . . . . . . 8  |-  ( ph  ->  ( ( F `  X ) ( +g  `  G ) ( F `
 X ) )  =  ( ( F `
 X ) ( +g  `  G ) ( F `  X
) ) )
13 eqid 2467 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
146, 13, 8elcntzsn 16235 . . . . . . . . 9  |-  ( ( F `  X )  e.  B  ->  (
( F `  X
)  e.  ( (Cntz `  G ) `  {
( F `  X
) } )  <->  ( ( F `  X )  e.  B  /\  (
( F `  X
) ( +g  `  G
) ( F `  X ) )  =  ( ( F `  X ) ( +g  `  G ) ( F `
 X ) ) ) ) )
1511, 14syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( F `  X )  e.  ( (Cntz `  G ) `  { ( F `  X ) } )  <-> 
( ( F `  X )  e.  B  /\  ( ( F `  X ) ( +g  `  G ) ( F `
 X ) )  =  ( ( F `
 X ) ( +g  `  G ) ( F `  X
) ) ) ) )
1611, 12, 15mpbir2and 920 . . . . . . 7  |-  ( ph  ->  ( F `  X
)  e.  ( (Cntz `  G ) `  {
( F `  X
) } ) )
1716snssd 4178 . . . . . 6  |-  ( ph  ->  { ( F `  X ) }  C_  ( (Cntz `  G ) `  { ( F `  X ) } ) )
18 eqid 2467 . . . . . . 7  |-  (mrCls `  (SubMnd `  G ) )  =  (mrCls `  (SubMnd `  G ) )
19 eqid 2467 . . . . . . 7  |-  ( Gs  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )  =  ( Gs  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
208, 18, 19cntzspan 16723 . . . . . 6  |-  ( ( G  e.  Mnd  /\  { ( F `  X
) }  C_  (
(Cntz `  G ) `  { ( F `  X ) } ) )  ->  ( Gs  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )  e. CMnd )
219, 17, 20syl2anc 661 . . . . 5  |-  ( ph  ->  ( Gs  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } ) )  e. CMnd )
226submacs 15868 . . . . . . . 8  |-  ( G  e.  Mnd  ->  (SubMnd `  G )  e.  (ACS
`  B ) )
23 acsmre 14924 . . . . . . . 8  |-  ( (SubMnd `  G )  e.  (ACS
`  B )  -> 
(SubMnd `  G )  e.  (Moore `  B )
)
249, 22, 233syl 20 . . . . . . 7  |-  ( ph  ->  (SubMnd `  G )  e.  (Moore `  B )
)
2511snssd 4178 . . . . . . 7  |-  ( ph  ->  { ( F `  X ) }  C_  B )
2618mrccl 14883 . . . . . . 7  |-  ( ( (SubMnd `  G )  e.  (Moore `  B )  /\  { ( F `  X ) }  C_  B )  ->  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  e.  (SubMnd `  G )
)
2724, 25, 26syl2anc 661 . . . . . 6  |-  ( ph  ->  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } )  e.  (SubMnd `  G
) )
2819, 8submcmn2 16720 . . . . . 6  |-  ( ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  e.  (SubMnd `  G )  ->  ( ( Gs  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )  e. CMnd  <->  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  C_  ( (Cntz `  G ) `  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) ) ) )
2927, 28syl 16 . . . . 5  |-  ( ph  ->  ( ( Gs  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )  e. CMnd  <->  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  C_  ( (Cntz `  G ) `  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) ) ) )
3021, 29mpbid 210 . . . 4  |-  ( ph  ->  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) 
C_  ( (Cntz `  G ) `  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) ) )
31 ffn 5737 . . . . . . 7  |-  ( F : A --> B  ->  F  Fn  A )
321, 31syl 16 . . . . . 6  |-  ( ph  ->  F  Fn  A )
33 simpr 461 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =  X )  ->  a  =  X )
3433fveq2d 5876 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =  X )  ->  ( F `  a )  =  ( F `  X ) )
3524, 18, 25mrcssidd 14897 . . . . . . . . . . 11  |-  ( ph  ->  { ( F `  X ) }  C_  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )
36 fvex 5882 . . . . . . . . . . . 12  |-  ( F `
 X )  e. 
_V
3736snss 4157 . . . . . . . . . . 11  |-  ( ( F `  X )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } )  <->  { ( F `  X ) }  C_  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )
3835, 37sylibr 212 . . . . . . . . . 10  |-  ( ph  ->  ( F `  X
)  e.  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
3938ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =  X )  ->  ( F `  X )  e.  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) )
4034, 39eqeltrd 2555 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =  X )  ->  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) )
41 eldifsn 4158 . . . . . . . . . . 11  |-  ( a  e.  ( A  \  { X } )  <->  ( a  e.  A  /\  a  =/=  X ) )
42 gsumptOLD.s . . . . . . . . . . . 12  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  { X } )
431, 42suppssrOLD 6022 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( A  \  { X } ) )  -> 
( F `  a
)  =  .0.  )
4441, 43sylan2br 476 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  A  /\  a  =/=  X ) )  -> 
( F `  a
)  =  .0.  )
457subm0cl 15855 . . . . . . . . . . . 12  |-  ( ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  e.  (SubMnd `  G )  ->  .0.  e.  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
4627, 45syl 16 . . . . . . . . . . 11  |-  ( ph  ->  .0.  e.  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
4746adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  A  /\  a  =/=  X ) )  ->  .0.  e.  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } ) )
4844, 47eqeltrd 2555 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  A  /\  a  =/=  X ) )  -> 
( F `  a
)  e.  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
4948anassrs 648 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =/=  X )  ->  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) )
5040, 49pm2.61dane 2785 . . . . . . 7  |-  ( (
ph  /\  a  e.  A )  ->  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) )
5150ralrimiva 2881 . . . . . 6  |-  ( ph  ->  A. a  e.  A  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } ) )
52 ffnfv 6058 . . . . . 6  |-  ( F : A --> ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } )  <->  ( F  Fn  A  /\  A. a  e.  A  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) ) )
5332, 51, 52sylanbrc 664 . . . . 5  |-  ( ph  ->  F : A --> ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
54 frn 5743 . . . . 5  |-  ( F : A --> ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } )  ->  ran  F 
C_  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } ) )
5553, 54syl 16 . . . 4  |-  ( ph  ->  ran  F  C_  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )
568cntzidss 16247 . . . 4  |-  ( ( ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) 
C_  ( (Cntz `  G ) `  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )  /\  ran  F  C_  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )  ->  ran  F  C_  (
(Cntz `  G ) `  ran  F ) )
5730, 55, 56syl2anc 661 . . 3  |-  ( ph  ->  ran  F  C_  (
(Cntz `  G ) `  ran  F ) )
58 snfi 7608 . . . 4  |-  { X }  e.  Fin
59 ssfi 7752 . . . 4  |-  ( ( { X }  e.  Fin  /\  ( `' F " ( _V  \  {  .0.  } ) )  C_  { X } )  -> 
( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
6058, 42, 59sylancr 663 . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
616, 7, 8, 9, 10, 1, 57, 42, 60gsumzresOLD 16791 . 2  |-  ( ph  ->  ( G  gsumg  ( F  |`  { X } ) )  =  ( G  gsumg  F ) )
62 fveq2 5872 . . . 4  |-  ( a  =  X  ->  ( F `  a )  =  ( F `  X ) )
636, 62gsumsn 16854 . . 3  |-  ( ( G  e.  Mnd  /\  X  e.  A  /\  ( F `  X )  e.  B )  -> 
( G  gsumg  ( a  e.  { X }  |->  ( F `
 a ) ) )  =  ( F `
 X ) )
649, 2, 11, 63syl3anc 1228 . 2  |-  ( ph  ->  ( G  gsumg  ( a  e.  { X }  |->  ( F `
 a ) ) )  =  ( F `
 X ) )
655, 61, 643eqtr3d 2516 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( F `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2817   _Vcvv 3118    \ cdif 3478    C_ wss 3481   {csn 4033    |-> cmpt 4511   `'ccnv 5004   ran crn 5006    |` cres 5007   "cima 5008    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6295   Fincfn 7528   Basecbs 14507   ↾s cress 14508   +g cplusg 14572   0gc0g 14712    gsumg cgsu 14713  Moorecmre 14854  mrClscmrc 14855  ACScacs 14857   Mndcmnd 15793  SubMndcsubmnd 15838  Cntzccntz 16225  CMndccmn 16671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-supp 6914  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-oi 7947  df-card 8332  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-n0 10808  df-z 10877  df-uz 11095  df-fz 11685  df-fzo 11805  df-seq 12088  df-hash 12386  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-0g 14714  df-gsum 14715  df-mre 14858  df-mrc 14859  df-acs 14861  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15840  df-mulg 15932  df-cntz 16227  df-cmn 16673
This theorem is referenced by:  dprdfidOLD  16936
  Copyright terms: Public domain W3C validator