MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpt Structured version   Unicode version

Theorem gsumpt 16776
Description: Sum of a family that is nonzero at at most one point. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumpt.b  |-  B  =  ( Base `  G
)
gsumpt.z  |-  .0.  =  ( 0g `  G )
gsumpt.g  |-  ( ph  ->  G  e.  Mnd )
gsumpt.a  |-  ( ph  ->  A  e.  V )
gsumpt.x  |-  ( ph  ->  X  e.  A )
gsumpt.f  |-  ( ph  ->  F : A --> B )
gsumpt.s  |-  ( ph  ->  ( F supp  .0.  )  C_ 
{ X } )
Assertion
Ref Expression
gsumpt  |-  ( ph  ->  ( G  gsumg  F )  =  ( F `  X ) )

Proof of Theorem gsumpt
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 gsumpt.f . . . 4  |-  ( ph  ->  F : A --> B )
2 gsumpt.x . . . . 5  |-  ( ph  ->  X  e.  A )
32snssd 4172 . . . 4  |-  ( ph  ->  { X }  C_  A )
41, 3feqresmpt 5919 . . 3  |-  ( ph  ->  ( F  |`  { X } )  =  ( a  e.  { X }  |->  ( F `  a ) ) )
54oveq2d 6298 . 2  |-  ( ph  ->  ( G  gsumg  ( F  |`  { X } ) )  =  ( G  gsumg  ( a  e.  { X }  |->  ( F `
 a ) ) ) )
6 gsumpt.b . . 3  |-  B  =  ( Base `  G
)
7 gsumpt.z . . 3  |-  .0.  =  ( 0g `  G )
8 eqid 2467 . . 3  |-  (Cntz `  G )  =  (Cntz `  G )
9 gsumpt.g . . 3  |-  ( ph  ->  G  e.  Mnd )
10 gsumpt.a . . 3  |-  ( ph  ->  A  e.  V )
111, 2ffvelrnd 6020 . . . . . . . 8  |-  ( ph  ->  ( F `  X
)  e.  B )
12 eqidd 2468 . . . . . . . 8  |-  ( ph  ->  ( ( F `  X ) ( +g  `  G ) ( F `
 X ) )  =  ( ( F `
 X ) ( +g  `  G ) ( F `  X
) ) )
13 eqid 2467 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
146, 13, 8elcntzsn 16155 . . . . . . . . 9  |-  ( ( F `  X )  e.  B  ->  (
( F `  X
)  e.  ( (Cntz `  G ) `  {
( F `  X
) } )  <->  ( ( F `  X )  e.  B  /\  (
( F `  X
) ( +g  `  G
) ( F `  X ) )  =  ( ( F `  X ) ( +g  `  G ) ( F `
 X ) ) ) ) )
1511, 14syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( F `  X )  e.  ( (Cntz `  G ) `  { ( F `  X ) } )  <-> 
( ( F `  X )  e.  B  /\  ( ( F `  X ) ( +g  `  G ) ( F `
 X ) )  =  ( ( F `
 X ) ( +g  `  G ) ( F `  X
) ) ) ) )
1611, 12, 15mpbir2and 920 . . . . . . 7  |-  ( ph  ->  ( F `  X
)  e.  ( (Cntz `  G ) `  {
( F `  X
) } ) )
1716snssd 4172 . . . . . 6  |-  ( ph  ->  { ( F `  X ) }  C_  ( (Cntz `  G ) `  { ( F `  X ) } ) )
18 eqid 2467 . . . . . . 7  |-  (mrCls `  (SubMnd `  G ) )  =  (mrCls `  (SubMnd `  G ) )
19 eqid 2467 . . . . . . 7  |-  ( Gs  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )  =  ( Gs  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
208, 18, 19cntzspan 16640 . . . . . 6  |-  ( ( G  e.  Mnd  /\  { ( F `  X
) }  C_  (
(Cntz `  G ) `  { ( F `  X ) } ) )  ->  ( Gs  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )  e. CMnd )
219, 17, 20syl2anc 661 . . . . 5  |-  ( ph  ->  ( Gs  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } ) )  e. CMnd )
226submacs 15803 . . . . . . . 8  |-  ( G  e.  Mnd  ->  (SubMnd `  G )  e.  (ACS
`  B ) )
23 acsmre 14900 . . . . . . . 8  |-  ( (SubMnd `  G )  e.  (ACS
`  B )  -> 
(SubMnd `  G )  e.  (Moore `  B )
)
249, 22, 233syl 20 . . . . . . 7  |-  ( ph  ->  (SubMnd `  G )  e.  (Moore `  B )
)
2511snssd 4172 . . . . . . 7  |-  ( ph  ->  { ( F `  X ) }  C_  B )
2618mrccl 14859 . . . . . . 7  |-  ( ( (SubMnd `  G )  e.  (Moore `  B )  /\  { ( F `  X ) }  C_  B )  ->  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  e.  (SubMnd `  G )
)
2724, 25, 26syl2anc 661 . . . . . 6  |-  ( ph  ->  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } )  e.  (SubMnd `  G
) )
2819, 8submcmn2 16637 . . . . . 6  |-  ( ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  e.  (SubMnd `  G )  ->  ( ( Gs  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )  e. CMnd  <->  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  C_  ( (Cntz `  G ) `  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) ) ) )
2927, 28syl 16 . . . . 5  |-  ( ph  ->  ( ( Gs  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )  e. CMnd  <->  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  C_  ( (Cntz `  G ) `  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) ) ) )
3021, 29mpbid 210 . . . 4  |-  ( ph  ->  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) 
C_  ( (Cntz `  G ) `  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) ) )
31 ffn 5729 . . . . . . 7  |-  ( F : A --> B  ->  F  Fn  A )
321, 31syl 16 . . . . . 6  |-  ( ph  ->  F  Fn  A )
33 simpr 461 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =  X )  ->  a  =  X )
3433fveq2d 5868 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =  X )  ->  ( F `  a )  =  ( F `  X ) )
3524, 18, 25mrcssidd 14873 . . . . . . . . . . 11  |-  ( ph  ->  { ( F `  X ) }  C_  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )
36 fvex 5874 . . . . . . . . . . . 12  |-  ( F `
 X )  e. 
_V
3736snss 4151 . . . . . . . . . . 11  |-  ( ( F `  X )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } )  <->  { ( F `  X ) }  C_  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )
3835, 37sylibr 212 . . . . . . . . . 10  |-  ( ph  ->  ( F `  X
)  e.  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
3938ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =  X )  ->  ( F `  X )  e.  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) )
4034, 39eqeltrd 2555 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =  X )  ->  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) )
41 eldifsn 4152 . . . . . . . . . . 11  |-  ( a  e.  ( A  \  { X } )  <->  ( a  e.  A  /\  a  =/=  X ) )
42 gsumpt.s . . . . . . . . . . . 12  |-  ( ph  ->  ( F supp  .0.  )  C_ 
{ X } )
43 fvex 5874 . . . . . . . . . . . . . 14  |-  ( 0g
`  G )  e. 
_V
447, 43eqeltri 2551 . . . . . . . . . . . . 13  |-  .0.  e.  _V
4544a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  .0.  e.  _V )
461, 42, 10, 45suppssr 6928 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( A  \  { X } ) )  -> 
( F `  a
)  =  .0.  )
4741, 46sylan2br 476 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  A  /\  a  =/=  X ) )  -> 
( F `  a
)  =  .0.  )
487subm0cl 15790 . . . . . . . . . . . 12  |-  ( ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } )  e.  (SubMnd `  G )  ->  .0.  e.  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
4927, 48syl 16 . . . . . . . . . . 11  |-  ( ph  ->  .0.  e.  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
5049adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  A  /\  a  =/=  X ) )  ->  .0.  e.  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } ) )
5147, 50eqeltrd 2555 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  A  /\  a  =/=  X ) )  -> 
( F `  a
)  e.  ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
5251anassrs 648 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  A )  /\  a  =/=  X )  ->  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) )
5340, 52pm2.61dane 2785 . . . . . . 7  |-  ( (
ph  /\  a  e.  A )  ->  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) )
5453ralrimiva 2878 . . . . . 6  |-  ( ph  ->  A. a  e.  A  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } ) )
55 ffnfv 6045 . . . . . 6  |-  ( F : A --> ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } )  <->  ( F  Fn  A  /\  A. a  e.  A  ( F `  a )  e.  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) ) )
5632, 54, 55sylanbrc 664 . . . . 5  |-  ( ph  ->  F : A --> ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } ) )
57 frn 5735 . . . . 5  |-  ( F : A --> ( (mrCls `  (SubMnd `  G )
) `  { ( F `  X ) } )  ->  ran  F 
C_  ( (mrCls `  (SubMnd `  G ) ) `
 { ( F `
 X ) } ) )
5856, 57syl 16 . . . 4  |-  ( ph  ->  ran  F  C_  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )
598cntzidss 16167 . . . 4  |-  ( ( ( (mrCls `  (SubMnd `  G ) ) `  { ( F `  X ) } ) 
C_  ( (Cntz `  G ) `  (
(mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )  /\  ran  F  C_  ( (mrCls `  (SubMnd `  G
) ) `  {
( F `  X
) } ) )  ->  ran  F  C_  (
(Cntz `  G ) `  ran  F ) )
6030, 58, 59syl2anc 661 . . 3  |-  ( ph  ->  ran  F  C_  (
(Cntz `  G ) `  ran  F ) )
61 ffun 5731 . . . . 5  |-  ( F : A --> B  ->  Fun  F )
621, 61syl 16 . . . 4  |-  ( ph  ->  Fun  F )
63 snfi 7593 . . . . 5  |-  { X }  e.  Fin
64 ssfi 7737 . . . . 5  |-  ( ( { X }  e.  Fin  /\  ( F supp  .0.  )  C_  { X }
)  ->  ( F supp  .0.  )  e.  Fin )
6563, 42, 64sylancr 663 . . . 4  |-  ( ph  ->  ( F supp  .0.  )  e.  Fin )
66 fex 6131 . . . . . 6  |-  ( ( F : A --> B  /\  A  e.  V )  ->  F  e.  _V )
671, 10, 66syl2anc 661 . . . . 5  |-  ( ph  ->  F  e.  _V )
68 isfsupp 7829 . . . . 5  |-  ( ( F  e.  _V  /\  .0.  e.  _V )  -> 
( F finSupp  .0.  <->  ( Fun  F  /\  ( F supp  .0.  )  e.  Fin )
) )
6967, 45, 68syl2anc 661 . . . 4  |-  ( ph  ->  ( F finSupp  .0.  <->  ( Fun  F  /\  ( F supp  .0.  )  e.  Fin )
) )
7062, 65, 69mpbir2and 920 . . 3  |-  ( ph  ->  F finSupp  .0.  )
716, 7, 8, 9, 10, 1, 60, 42, 70gsumzres 16702 . 2  |-  ( ph  ->  ( G  gsumg  ( F  |`  { X } ) )  =  ( G  gsumg  F ) )
72 fveq2 5864 . . . 4  |-  ( a  =  X  ->  ( F `  a )  =  ( F `  X ) )
736, 72gsumsn 16769 . . 3  |-  ( ( G  e.  Mnd  /\  X  e.  A  /\  ( F `  X )  e.  B )  -> 
( G  gsumg  ( a  e.  { X }  |->  ( F `
 a ) ) )  =  ( F `
 X ) )
749, 2, 11, 73syl3anc 1228 . 2  |-  ( ph  ->  ( G  gsumg  ( a  e.  { X }  |->  ( F `
 a ) ) )  =  ( F `
 X ) )
755, 71, 743eqtr3d 2516 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( F `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   _Vcvv 3113    \ cdif 3473    C_ wss 3476   {csn 4027   class class class wbr 4447    |-> cmpt 4505   ran crn 5000    |` cres 5001   Fun wfun 5580    Fn wfn 5581   -->wf 5582   ` cfv 5586  (class class class)co 6282   supp csupp 6898   Fincfn 7513   finSupp cfsupp 7825   Basecbs 14483   ↾s cress 14484   +g cplusg 14548   0gc0g 14688    gsumg cgsu 14689  Moorecmre 14830  mrClscmrc 14831  ACScacs 14833   Mndcmnd 15719  SubMndcsubmnd 15773  Cntzccntz 16145  CMndccmn 16591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-n0 10792  df-z 10861  df-uz 11079  df-fz 11669  df-fzo 11789  df-seq 12071  df-hash 12368  df-ndx 14486  df-slot 14487  df-base 14488  df-sets 14489  df-ress 14490  df-plusg 14561  df-0g 14690  df-gsum 14691  df-mre 14834  df-mrc 14835  df-acs 14837  df-mnd 15725  df-submnd 15775  df-mulg 15858  df-cntz 16147  df-cmn 16593
This theorem is referenced by:  gsummpt1n0  16780  dprdfid  16844  evlslem3  17951  evlslem1  17952  coe1tmmul2  18085  coe1tmmul  18086  uvcresum  18588  frlmup2  18597  mamulid  18707  mamurid  18708  coe1mul3  22232  tayl0  22488  jensen  23043  linc1  32099
  Copyright terms: Public domain W3C validator