MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpropd2 Structured version   Unicode version

Theorem gsumpropd2 15605
Description: A stronger version of gsumpropd 15603, working for magma, where only the closure of the addition operation on a common base is required. (Contributed by Thierry Arnoux, 28-Jun-2017.)
Hypotheses
Ref Expression
gsumpropd2.f  |-  ( ph  ->  F  e.  V )
gsumpropd2.g  |-  ( ph  ->  G  e.  W )
gsumpropd2.h  |-  ( ph  ->  H  e.  X )
gsumpropd2.b  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
gsumpropd2.c  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  e.  ( Base `  G
) )
gsumpropd2.e  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  =  ( s ( +g  `  H ) t ) )
gsumpropd2.n  |-  ( ph  ->  Fun  F )
gsumpropd2.r  |-  ( ph  ->  ran  F  C_  ( Base `  G ) )
Assertion
Ref Expression
gsumpropd2  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Distinct variable groups:    t, s, F    G, s, t    H, s, t    ph, s, t
Allowed substitution hints:    V( t, s)    W( t, s)    X( t, s)

Proof of Theorem gsumpropd2
StepHypRef Expression
1 gsumpropd2.f . 2  |-  ( ph  ->  F  e.  V )
2 gsumpropd2.g . 2  |-  ( ph  ->  G  e.  W )
3 gsumpropd2.h . 2  |-  ( ph  ->  H  e.  X )
4 gsumpropd2.b . 2  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
5 gsumpropd2.c . 2  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  e.  ( Base `  G
) )
6 gsumpropd2.e . 2  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  =  ( s ( +g  `  H ) t ) )
7 gsumpropd2.n . 2  |-  ( ph  ->  Fun  F )
8 gsumpropd2.r . 2  |-  ( ph  ->  ran  F  C_  ( Base `  G ) )
9 eqid 2451 . 2  |-  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  =  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )
10 eqid 2451 . 2  |-  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )  =  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10gsumpropd2lem 15604 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2793   {crab 2797   _Vcvv 3065    \ cdif 3420    C_ wss 3423   `'ccnv 4934   ran crn 4936   "cima 4938   Fun wfun 5507   ` cfv 5513  (class class class)co 6187   Basecbs 14273   +g cplusg 14337    gsumg cgsu 14478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626  ax-un 6469  ax-cnex 9436  ax-resscn 9437  ax-1cn 9438  ax-icn 9439  ax-addcl 9440  ax-addrcl 9441  ax-mulcl 9442  ax-mulrcl 9443  ax-mulcom 9444  ax-addass 9445  ax-mulass 9446  ax-distr 9447  ax-i2m1 9448  ax-1ne0 9449  ax-1rid 9450  ax-rnegex 9451  ax-rrecex 9452  ax-cnre 9453  ax-pre-lttri 9454  ax-pre-lttrn 9455  ax-pre-ltadd 9456  ax-pre-mulgt0 9457
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-nel 2645  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-pss 3439  df-nul 3733  df-if 3887  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4187  df-iun 4268  df-br 4388  df-opab 4446  df-mpt 4447  df-tr 4481  df-eprel 4727  df-id 4731  df-po 4736  df-so 4737  df-fr 4774  df-we 4776  df-ord 4817  df-on 4818  df-lim 4819  df-suc 4820  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-riota 6148  df-ov 6190  df-oprab 6191  df-mpt2 6192  df-om 6574  df-1st 6674  df-2nd 6675  df-recs 6929  df-rdg 6963  df-er 7198  df-en 7408  df-dom 7409  df-sdom 7410  df-pnf 9518  df-mnf 9519  df-xr 9520  df-ltxr 9521  df-le 9522  df-sub 9695  df-neg 9696  df-nn 10421  df-n0 10678  df-z 10745  df-uz 10960  df-fz 11536  df-seq 11905  df-0g 14479  df-gsum 14480
This theorem is referenced by:  gsumply1subr  17792  esumpfinvallem  26654
  Copyright terms: Public domain W3C validator