MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpropd Structured version   Unicode version

Theorem gsumpropd 15509
Description: The group sum depends only on the base set and additive operation. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 15451 etc. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
gsumpropd.f  |-  ( ph  ->  F  e.  V )
gsumpropd.g  |-  ( ph  ->  G  e.  W )
gsumpropd.h  |-  ( ph  ->  H  e.  X )
gsumpropd.b  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
gsumpropd.p  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
Assertion
Ref Expression
gsumpropd  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )

Proof of Theorem gsumpropd
Dummy variables  a 
b  f  m  n  s  t  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumpropd.b . . . . 5  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
2 gsumpropd.p . . . . . . . . 9  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  H ) )
32oveqd 6113 . . . . . . . 8  |-  ( ph  ->  ( s ( +g  `  G ) t )  =  ( s ( +g  `  H ) t ) )
43eqeq1d 2451 . . . . . . 7  |-  ( ph  ->  ( ( s ( +g  `  G ) t )  =  t  <-> 
( s ( +g  `  H ) t )  =  t ) )
52oveqd 6113 . . . . . . . 8  |-  ( ph  ->  ( t ( +g  `  G ) s )  =  ( t ( +g  `  H ) s ) )
65eqeq1d 2451 . . . . . . 7  |-  ( ph  ->  ( ( t ( +g  `  G ) s )  =  t  <-> 
( t ( +g  `  H ) s )  =  t ) )
74, 6anbi12d 710 . . . . . 6  |-  ( ph  ->  ( ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t )  <->  ( (
s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) ) )
81, 7raleqbidv 2936 . . . . 5  |-  ( ph  ->  ( A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t )  <->  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) ) )
91, 8rabeqbidv 2972 . . . 4  |-  ( ph  ->  { s  e.  (
Base `  G )  |  A. t  e.  (
Base `  G )
( ( s ( +g  `  G ) t )  =  t  /\  ( t ( +g  `  G ) s )  =  t ) }  =  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } )
109sseq2d 3389 . . 3  |-  ( ph  ->  ( ran  F  C_  { s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) }  <->  ran  F  C_  { s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )
11 eqidd 2444 . . . 4  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  G ) )
122proplem3 14634 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  G
)  /\  b  e.  ( Base `  G )
) )  ->  (
a ( +g  `  G
) b )  =  ( a ( +g  `  H ) b ) )
1311, 1, 12grpidpropd 15452 . . 3  |-  ( ph  ->  ( 0g `  G
)  =  ( 0g
`  H ) )
142seqeq2d 11818 . . . . . . . . . 10  |-  ( ph  ->  seq m ( ( +g  `  G ) ,  F )  =  seq m ( ( +g  `  H ) ,  F ) )
1514fveq1d 5698 . . . . . . . . 9  |-  ( ph  ->  (  seq m ( ( +g  `  G
) ,  F ) `
 n )  =  (  seq m ( ( +g  `  H
) ,  F ) `
 n ) )
1615eqeq2d 2454 . . . . . . . 8  |-  ( ph  ->  ( x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n )  <->  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) )
1716anbi2d 703 . . . . . . 7  |-  ( ph  ->  ( ( dom  F  =  ( m ... n )  /\  x  =  (  seq m
( ( +g  `  G
) ,  F ) `
 n ) )  <-> 
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
1817rexbidv 2741 . . . . . 6  |-  ( ph  ->  ( E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) )  <->  E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
1918exbidv 1680 . . . . 5  |-  ( ph  ->  ( E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )
)  <->  E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
2019iotabidv 5407 . . . 4  |-  ( ph  ->  ( iota x E. m E. n  e.  (
ZZ>= `  m ) ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) ) )  =  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) )
219difeq2d 3479 . . . . . . . . . . . 12  |-  ( ph  ->  ( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } )  =  ( _V  \  { s  e.  (
Base `  H )  |  A. t  e.  (
Base `  H )
( ( s ( +g  `  H ) t )  =  t  /\  ( t ( +g  `  H ) s )  =  t ) } ) )
2221imaeq2d 5174 . . . . . . . . . . 11  |-  ( ph  ->  ( `' F "
( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  =  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) )
2322fveq2d 5700 . . . . . . . . . 10  |-  ( ph  ->  ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) )  =  (
# `  ( `' F " ( _V  \  { s  e.  (
Base `  H )  |  A. t  e.  (
Base `  H )
( ( s ( +g  `  H ) t )  =  t  /\  ( t ( +g  `  H ) s )  =  t ) } ) ) ) )
2423oveq2d 6112 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) )  =  ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) )
25 f1oeq2 5638 . . . . . . . . 9  |-  ( ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) )  =  ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) )  -> 
( f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  <->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) )
2624, 25syl 16 . . . . . . . 8  |-  ( ph  ->  ( f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  <->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) )
27 f1oeq3 5639 . . . . . . . . 9  |-  ( ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  =  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )  ->  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  <->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) )
2822, 27syl 16 . . . . . . . 8  |-  ( ph  ->  ( f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  <->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) )
2926, 28bitrd 253 . . . . . . 7  |-  ( ph  ->  ( f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  <->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) )
302seqeq2d 11818 . . . . . . . . 9  |-  ( ph  ->  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) )  =  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) )
3130, 23fveq12d 5702 . . . . . . . 8  |-  ( ph  ->  (  seq 1 ( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) )  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) )
3231eqeq2d 2454 . . . . . . 7  |-  ( ph  ->  ( x  =  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) )  <->  x  =  (  seq 1 ( ( +g  `  H ) ,  ( F  o.  f ) ) `  ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) ) )
3329, 32anbi12d 710 . . . . . 6  |-  ( ph  ->  ( ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) )  <-> 
( f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) ) ) )
3433exbidv 1680 . . . . 5  |-  ( ph  ->  ( E. f ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) )  <->  E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) ) ) )
3534iotabidv 5407 . . . 4  |-  ( ph  ->  ( iota x E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) ) )  =  ( iota
x E. f ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) ) ) )
3620, 35ifeq12d 3814 . . 3  |-  ( ph  ->  if ( dom  F  e.  ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F
) `  n )
) ) ,  ( iota x E. f
( f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) ) ) )  =  if ( dom  F  e. 
ran  ... ,  ( iota
x E. m E. n  e.  ( ZZ>= `  m ) ( dom 
F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  H ) ,  F
) `  n )
) ) ,  ( iota x E. f
( f : ( 1 ... ( # `  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) ) ) ) )
3710, 13, 36ifbieq12d 3821 . 2  |-  ( ph  ->  if ( ran  F  C_ 
{ s  e.  (
Base `  G )  |  A. t  e.  (
Base `  G )
( ( s ( +g  `  G ) t )  =  t  /\  ( t ( +g  `  G ) s )  =  t ) } ,  ( 0g `  G ) ,  if ( dom 
F  e.  ran  ... ,  ( iota x E. m E. n  e.  (
ZZ>= `  m ) ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) ) ) ) )  =  if ( ran  F  C_ 
{ s  e.  (
Base `  H )  |  A. t  e.  (
Base `  H )
( ( s ( +g  `  H ) t )  =  t  /\  ( t ( +g  `  H ) s )  =  t ) } ,  ( 0g `  H ) ,  if ( dom 
F  e.  ran  ... ,  ( iota x E. m E. n  e.  (
ZZ>= `  m ) ( dom  F  =  ( m ... n )  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) ) ) ) ) )
38 eqid 2443 . . 3  |-  ( Base `  G )  =  (
Base `  G )
39 eqid 2443 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
40 eqid 2443 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
41 eqid 2443 . . 3  |-  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) }  =  { s  e.  (
Base `  G )  |  A. t  e.  (
Base `  G )
( ( s ( +g  `  G ) t )  =  t  /\  ( t ( +g  `  G ) s )  =  t ) }
42 eqidd 2444 . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  =  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) )
43 gsumpropd.g . . 3  |-  ( ph  ->  G  e.  W )
44 gsumpropd.f . . 3  |-  ( ph  ->  F  e.  V )
45 eqidd 2444 . . 3  |-  ( ph  ->  dom  F  =  dom  F )
4638, 39, 40, 41, 42, 43, 44, 45gsumvalx 15507 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  if ( ran  F  C_  { s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } , 
( 0g `  G
) ,  if ( dom  F  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  G ) ,  F ) `  n ) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  G )  |  A. t  e.  ( Base `  G ) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  G
)  |  A. t  e.  ( Base `  G
) ( ( s ( +g  `  G
) t )  =  t  /\  ( t ( +g  `  G
) s )  =  t ) } ) ) ) ) ) ) ) ) )
47 eqid 2443 . . 3  |-  ( Base `  H )  =  (
Base `  H )
48 eqid 2443 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
49 eqid 2443 . . 3  |-  ( +g  `  H )  =  ( +g  `  H )
50 eqid 2443 . . 3  |-  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) }  =  { s  e.  (
Base `  H )  |  A. t  e.  (
Base `  H )
( ( s ( +g  `  H ) t )  =  t  /\  ( t ( +g  `  H ) s )  =  t ) }
51 eqidd 2444 . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )  =  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) )
52 gsumpropd.h . . 3  |-  ( ph  ->  H  e.  X )
5347, 48, 49, 50, 51, 52, 44, 45gsumvalx 15507 . 2  |-  ( ph  ->  ( H  gsumg  F )  =  if ( ran  F  C_  { s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } , 
( 0g `  H
) ,  if ( dom  F  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( dom  F  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  H ) ,  F ) `  n ) ) ) ,  ( iota x E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  {
s  e.  ( Base `  H )  |  A. t  e.  ( Base `  H ) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) )  /\  x  =  (  seq 1 ( ( +g  `  H
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  { s  e.  ( Base `  H
)  |  A. t  e.  ( Base `  H
) ( ( s ( +g  `  H
) t )  =  t  /\  ( t ( +g  `  H
) s )  =  t ) } ) ) ) ) ) ) ) ) )
5437, 46, 533eqtr4d 2485 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   A.wral 2720   E.wrex 2721   {crab 2724   _Vcvv 2977    \ cdif 3330    C_ wss 3333   ifcif 3796   `'ccnv 4844   dom cdm 4845   ran crn 4846   "cima 4848    o. ccom 4849   iotacio 5384   -1-1-onto->wf1o 5422   ` cfv 5423  (class class class)co 6096   1c1 9288   ZZ>=cuz 10866   ...cfz 11442    seqcseq 11811   #chash 12108   Basecbs 14179   +g cplusg 14243   0gc0g 14383    gsumg cgsu 14384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-recs 6837  df-rdg 6871  df-seq 11812  df-0g 14385  df-gsum 14386
This theorem is referenced by:  psropprmul  17698  ply1coe  17751  ply1coeOLD  17752  frlmgsumOLD  18200  frlmgsum  18201  tsmspropd  19707  matgsum  30867
  Copyright terms: Public domain W3C validator