MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummatr01lem1 Structured version   Unicode version

Theorem gsummatr01lem1 18919
Description: Lemma A for gsummatr01 18923. (Contributed by AV, 8-Jan-2019.)
Hypotheses
Ref Expression
gsummatr01.p  |-  P  =  ( Base `  ( SymGrp `
 N ) )
gsummatr01.r  |-  R  =  { r  e.  P  |  ( r `  K )  =  L }
Assertion
Ref Expression
gsummatr01lem1  |-  ( ( Q  e.  R  /\  X  e.  N )  ->  ( Q `  X
)  e.  N )
Distinct variable groups:    K, r    L, r    P, r    Q, r
Allowed substitution hints:    R( r)    N( r)    X( r)

Proof of Theorem gsummatr01lem1
StepHypRef Expression
1 fveq1 5858 . . . . 5  |-  ( r  =  Q  ->  (
r `  K )  =  ( Q `  K ) )
21eqeq1d 2464 . . . 4  |-  ( r  =  Q  ->  (
( r `  K
)  =  L  <->  ( Q `  K )  =  L ) )
3 gsummatr01.r . . . 4  |-  R  =  { r  e.  P  |  ( r `  K )  =  L }
42, 3elrab2 3258 . . 3  |-  ( Q  e.  R  <->  ( Q  e.  P  /\  ( Q `  K )  =  L ) )
54simplbi 460 . 2  |-  ( Q  e.  R  ->  Q  e.  P )
6 eqid 2462 . . 3  |-  ( SymGrp `  N )  =  (
SymGrp `  N )
7 gsummatr01.p . . 3  |-  P  =  ( Base `  ( SymGrp `
 N ) )
86, 7symgfv 16202 . 2  |-  ( ( Q  e.  P  /\  X  e.  N )  ->  ( Q `  X
)  e.  N )
95, 8sylan 471 1  |-  ( ( Q  e.  R  /\  X  e.  N )  ->  ( Q `  X
)  e.  N )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   {crab 2813   ` cfv 5581   Basecbs 14481   SymGrpcsymg 16192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-int 4278  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-1st 6776  df-2nd 6777  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7509  df-dom 7510  df-sdom 7511  df-fin 7512  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-nn 10528  df-2 10585  df-3 10586  df-4 10587  df-5 10588  df-6 10589  df-7 10590  df-8 10591  df-9 10592  df-n0 10787  df-z 10856  df-uz 11074  df-fz 11664  df-struct 14483  df-ndx 14484  df-slot 14485  df-base 14486  df-plusg 14559  df-tset 14565  df-symg 16193
This theorem is referenced by:  gsummatr01lem2  18920  gsummatr01lem3  18921  gsummatr01lem4  18922  gsummatr01  18923
  Copyright terms: Public domain W3C validator