Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumle Structured version   Visualization version   Unicode version

Theorem gsumle 28616
Description: A finite sum in an ordered monoid is monotonic. This proof would be much easier in an ordered group, where an inverse element would be available. (Contributed by Thierry Arnoux, 13-Mar-2018.)
Hypotheses
Ref Expression
gsumle.b  |-  B  =  ( Base `  M
)
gsumle.l  |-  .<_  =  ( le `  M )
gsumle.m  |-  ( ph  ->  M  e. oMnd )
gsumle.n  |-  ( ph  ->  M  e. CMnd )
gsumle.a  |-  ( ph  ->  A  e.  Fin )
gsumle.f  |-  ( ph  ->  F : A --> B )
gsumle.g  |-  ( ph  ->  G : A --> B )
gsumle.c  |-  ( ph  ->  F  oR  .<_  G )
Assertion
Ref Expression
gsumle  |-  ( ph  ->  ( M  gsumg  F )  .<_  ( M 
gsumg  G ) )

Proof of Theorem gsumle
Dummy variables  e 
a  y  z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumle.a . . 3  |-  ( ph  ->  A  e.  Fin )
2 ssid 3437 . . . 4  |-  A  C_  A
3 sseq1 3439 . . . . . . . 8  |-  ( a  =  (/)  ->  ( a 
C_  A  <->  (/)  C_  A
) )
43anbi2d 718 . . . . . . 7  |-  ( a  =  (/)  ->  ( (
ph  /\  a  C_  A )  <->  ( ph  /\  (/)  C_  A ) ) )
5 reseq2 5106 . . . . . . . . 9  |-  ( a  =  (/)  ->  ( F  |`  a )  =  ( F  |`  (/) ) )
65oveq2d 6324 . . . . . . . 8  |-  ( a  =  (/)  ->  ( M 
gsumg  ( F  |`  a ) )  =  ( M 
gsumg  ( F  |`  (/) ) ) )
7 reseq2 5106 . . . . . . . . 9  |-  ( a  =  (/)  ->  ( G  |`  a )  =  ( G  |`  (/) ) )
87oveq2d 6324 . . . . . . . 8  |-  ( a  =  (/)  ->  ( M 
gsumg  ( G  |`  a ) )  =  ( M 
gsumg  ( G  |`  (/) ) ) )
96, 8breq12d 4408 . . . . . . 7  |-  ( a  =  (/)  ->  ( ( M  gsumg  ( F  |`  a
) )  .<_  ( M 
gsumg  ( G  |`  a ) )  <->  ( M  gsumg  ( F  |`  (/) ) )  .<_  ( M  gsumg  ( G  |`  (/) ) ) ) )
104, 9imbi12d 327 . . . . . 6  |-  ( a  =  (/)  ->  ( ( ( ph  /\  a  C_  A )  ->  ( M  gsumg  ( F  |`  a
) )  .<_  ( M 
gsumg  ( G  |`  a ) ) )  <->  ( ( ph  /\  (/)  C_  A )  ->  ( M  gsumg  ( F  |`  (/) ) ) 
.<_  ( M  gsumg  ( G  |`  (/) ) ) ) ) )
11 sseq1 3439 . . . . . . . 8  |-  ( a  =  e  ->  (
a  C_  A  <->  e  C_  A ) )
1211anbi2d 718 . . . . . . 7  |-  ( a  =  e  ->  (
( ph  /\  a  C_  A )  <->  ( ph  /\  e  C_  A )
) )
13 reseq2 5106 . . . . . . . . 9  |-  ( a  =  e  ->  ( F  |`  a )  =  ( F  |`  e
) )
1413oveq2d 6324 . . . . . . . 8  |-  ( a  =  e  ->  ( M  gsumg  ( F  |`  a
) )  =  ( M  gsumg  ( F  |`  e
) ) )
15 reseq2 5106 . . . . . . . . 9  |-  ( a  =  e  ->  ( G  |`  a )  =  ( G  |`  e
) )
1615oveq2d 6324 . . . . . . . 8  |-  ( a  =  e  ->  ( M  gsumg  ( G  |`  a
) )  =  ( M  gsumg  ( G  |`  e
) ) )
1714, 16breq12d 4408 . . . . . . 7  |-  ( a  =  e  ->  (
( M  gsumg  ( F  |`  a
) )  .<_  ( M 
gsumg  ( G  |`  a ) )  <->  ( M  gsumg  ( F  |`  e ) )  .<_  ( M  gsumg  ( G  |`  e
) ) ) )
1812, 17imbi12d 327 . . . . . 6  |-  ( a  =  e  ->  (
( ( ph  /\  a  C_  A )  -> 
( M  gsumg  ( F  |`  a
) )  .<_  ( M 
gsumg  ( G  |`  a ) ) )  <->  ( ( ph  /\  e  C_  A
)  ->  ( M  gsumg  ( F  |`  e )
)  .<_  ( M  gsumg  ( G  |`  e ) ) ) ) )
19 sseq1 3439 . . . . . . . 8  |-  ( a  =  ( e  u. 
{ y } )  ->  ( a  C_  A 
<->  ( e  u.  {
y } )  C_  A ) )
2019anbi2d 718 . . . . . . 7  |-  ( a  =  ( e  u. 
{ y } )  ->  ( ( ph  /\  a  C_  A )  <->  (
ph  /\  ( e  u.  { y } ) 
C_  A ) ) )
21 reseq2 5106 . . . . . . . . 9  |-  ( a  =  ( e  u. 
{ y } )  ->  ( F  |`  a )  =  ( F  |`  ( e  u.  { y } ) ) )
2221oveq2d 6324 . . . . . . . 8  |-  ( a  =  ( e  u. 
{ y } )  ->  ( M  gsumg  ( F  |`  a ) )  =  ( M  gsumg  ( F  |`  (
e  u.  { y } ) ) ) )
23 reseq2 5106 . . . . . . . . 9  |-  ( a  =  ( e  u. 
{ y } )  ->  ( G  |`  a )  =  ( G  |`  ( e  u.  { y } ) ) )
2423oveq2d 6324 . . . . . . . 8  |-  ( a  =  ( e  u. 
{ y } )  ->  ( M  gsumg  ( G  |`  a ) )  =  ( M  gsumg  ( G  |`  (
e  u.  { y } ) ) ) )
2522, 24breq12d 4408 . . . . . . 7  |-  ( a  =  ( e  u. 
{ y } )  ->  ( ( M 
gsumg  ( F  |`  a ) )  .<_  ( M  gsumg  ( G  |`  a )
)  <->  ( M  gsumg  ( F  |`  ( e  u.  {
y } ) ) )  .<_  ( M  gsumg  ( G  |`  ( e  u.  { y } ) ) ) ) )
2620, 25imbi12d 327 . . . . . 6  |-  ( a  =  ( e  u. 
{ y } )  ->  ( ( (
ph  /\  a  C_  A )  ->  ( M  gsumg  ( F  |`  a
) )  .<_  ( M 
gsumg  ( G  |`  a ) ) )  <->  ( ( ph  /\  ( e  u. 
{ y } ) 
C_  A )  -> 
( M  gsumg  ( F  |`  (
e  u.  { y } ) ) ) 
.<_  ( M  gsumg  ( G  |`  (
e  u.  { y } ) ) ) ) ) )
27 sseq1 3439 . . . . . . . 8  |-  ( a  =  A  ->  (
a  C_  A  <->  A  C_  A
) )
2827anbi2d 718 . . . . . . 7  |-  ( a  =  A  ->  (
( ph  /\  a  C_  A )  <->  ( ph  /\  A  C_  A )
) )
29 reseq2 5106 . . . . . . . . 9  |-  ( a  =  A  ->  ( F  |`  a )  =  ( F  |`  A ) )
3029oveq2d 6324 . . . . . . . 8  |-  ( a  =  A  ->  ( M  gsumg  ( F  |`  a
) )  =  ( M  gsumg  ( F  |`  A ) ) )
31 reseq2 5106 . . . . . . . . 9  |-  ( a  =  A  ->  ( G  |`  a )  =  ( G  |`  A ) )
3231oveq2d 6324 . . . . . . . 8  |-  ( a  =  A  ->  ( M  gsumg  ( G  |`  a
) )  =  ( M  gsumg  ( G  |`  A ) ) )
3330, 32breq12d 4408 . . . . . . 7  |-  ( a  =  A  ->  (
( M  gsumg  ( F  |`  a
) )  .<_  ( M 
gsumg  ( G  |`  a ) )  <->  ( M  gsumg  ( F  |`  A ) )  .<_  ( M  gsumg  ( G  |`  A ) ) ) )
3428, 33imbi12d 327 . . . . . 6  |-  ( a  =  A  ->  (
( ( ph  /\  a  C_  A )  -> 
( M  gsumg  ( F  |`  a
) )  .<_  ( M 
gsumg  ( G  |`  a ) ) )  <->  ( ( ph  /\  A  C_  A
)  ->  ( M  gsumg  ( F  |`  A )
)  .<_  ( M  gsumg  ( G  |`  A ) ) ) ) )
35 gsumle.m . . . . . . . . . 10  |-  ( ph  ->  M  e. oMnd )
36 omndtos 28542 . . . . . . . . . 10  |-  ( M  e. oMnd  ->  M  e. Toset )
37 tospos 28494 . . . . . . . . . 10  |-  ( M  e. Toset  ->  M  e.  Poset )
3835, 36, 373syl 18 . . . . . . . . 9  |-  ( ph  ->  M  e.  Poset )
39 res0 5115 . . . . . . . . . . . 12  |-  ( F  |`  (/) )  =  (/)
4039oveq2i 6319 . . . . . . . . . . 11  |-  ( M 
gsumg  ( F  |`  (/) ) )  =  ( M  gsumg  (/) )
41 eqid 2471 . . . . . . . . . . . 12  |-  ( 0g
`  M )  =  ( 0g `  M
)
4241gsum0 16599 . . . . . . . . . . 11  |-  ( M 
gsumg  (/) )  =  ( 0g
`  M )
4340, 42eqtri 2493 . . . . . . . . . 10  |-  ( M 
gsumg  ( F  |`  (/) ) )  =  ( 0g `  M )
44 omndmnd 28541 . . . . . . . . . . 11  |-  ( M  e. oMnd  ->  M  e.  Mnd )
45 gsumle.b . . . . . . . . . . . 12  |-  B  =  ( Base `  M
)
4645, 41mndidcl 16632 . . . . . . . . . . 11  |-  ( M  e.  Mnd  ->  ( 0g `  M )  e.  B )
4735, 44, 463syl 18 . . . . . . . . . 10  |-  ( ph  ->  ( 0g `  M
)  e.  B )
4843, 47syl5eqel 2553 . . . . . . . . 9  |-  ( ph  ->  ( M  gsumg  ( F  |`  (/) ) )  e.  B )
49 gsumle.l . . . . . . . . . 10  |-  .<_  =  ( le `  M )
5045, 49posref 16274 . . . . . . . . 9  |-  ( ( M  e.  Poset  /\  ( M  gsumg  ( F  |`  (/) ) )  e.  B )  -> 
( M  gsumg  ( F  |`  (/) ) ) 
.<_  ( M  gsumg  ( F  |`  (/) ) ) )
5138, 48, 50syl2anc 673 . . . . . . . 8  |-  ( ph  ->  ( M  gsumg  ( F  |`  (/) ) ) 
.<_  ( M  gsumg  ( F  |`  (/) ) ) )
52 res0 5115 . . . . . . . . . 10  |-  ( G  |`  (/) )  =  (/)
5339, 52eqtr4i 2496 . . . . . . . . 9  |-  ( F  |`  (/) )  =  ( G  |`  (/) )
5453oveq2i 6319 . . . . . . . 8  |-  ( M 
gsumg  ( F  |`  (/) ) )  =  ( M  gsumg  ( G  |`  (/) ) )
5551, 54syl6breq 4435 . . . . . . 7  |-  ( ph  ->  ( M  gsumg  ( F  |`  (/) ) ) 
.<_  ( M  gsumg  ( G  |`  (/) ) ) )
5655adantr 472 . . . . . 6  |-  ( (
ph  /\  (/)  C_  A
)  ->  ( M  gsumg  ( F  |`  (/) ) ) 
.<_  ( M  gsumg  ( G  |`  (/) ) ) )
57 ssun1 3588 . . . . . . . . . 10  |-  e  C_  ( e  u.  {
y } )
58 sstr2 3425 . . . . . . . . . 10  |-  ( e 
C_  ( e  u. 
{ y } )  ->  ( ( e  u.  { y } )  C_  A  ->  e 
C_  A ) )
5957, 58ax-mp 5 . . . . . . . . 9  |-  ( ( e  u.  { y } )  C_  A  ->  e  C_  A )
6059anim2i 579 . . . . . . . 8  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
( ph  /\  e  C_  A ) )
6160imim1i 59 . . . . . . 7  |-  ( ( ( ph  /\  e  C_  A )  ->  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  (
( ph  /\  (
e  u.  { y } )  C_  A
)  ->  ( M  gsumg  ( F  |`  e )
)  .<_  ( M  gsumg  ( G  |`  e ) ) ) )
62 simplr 770 . . . . . . . . . 10  |-  ( ( ( ( e  e. 
Fin  /\  -.  y  e.  e )  /\  ( ph  /\  ( e  u. 
{ y } ) 
C_  A ) )  /\  ( M  gsumg  ( F  |`  e ) )  .<_  ( M  gsumg  ( G  |`  e
) ) )  -> 
( ph  /\  (
e  u.  { y } )  C_  A
) )
63 simpllr 777 . . . . . . . . . 10  |-  ( ( ( ( e  e. 
Fin  /\  -.  y  e.  e )  /\  ( ph  /\  ( e  u. 
{ y } ) 
C_  A ) )  /\  ( M  gsumg  ( F  |`  e ) )  .<_  ( M  gsumg  ( G  |`  e
) ) )  ->  -.  y  e.  e
)
64 simpr 468 . . . . . . . . . 10  |-  ( ( ( ( e  e. 
Fin  /\  -.  y  e.  e )  /\  ( ph  /\  ( e  u. 
{ y } ) 
C_  A ) )  /\  ( M  gsumg  ( F  |`  e ) )  .<_  ( M  gsumg  ( G  |`  e
) ) )  -> 
( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )
65 eqid 2471 . . . . . . . . . . . 12  |-  ( +g  `  M )  =  ( +g  `  M )
6635ad3antrrr 744 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  M  e. oMnd )
67 gsumle.g . . . . . . . . . . . . . . 15  |-  ( ph  ->  G : A --> B )
6867ad2antrr 740 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  G : A --> B )
69 simplr 770 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  (
e  u.  { y } )  C_  A
)
70 ssun2 3589 . . . . . . . . . . . . . . . . 17  |-  { y }  C_  ( e  u.  { y } )
71 vex 3034 . . . . . . . . . . . . . . . . . 18  |-  y  e. 
_V
7271snss 4087 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( e  u. 
{ y } )  <->  { y }  C_  ( e  u.  {
y } ) )
7370, 72mpbir 214 . . . . . . . . . . . . . . . 16  |-  y  e.  ( e  u.  {
y } )
7473a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  y  e.  ( e  u.  {
y } ) )
7569, 74sseldd 3419 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  y  e.  A )
7668, 75ffvelrnd 6038 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( G `  y )  e.  B )
7776adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  ( G `  y )  e.  B )
78 gsumle.n . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  e. CMnd )
7978ad2antrr 740 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  M  e. CMnd )
80 vex 3034 . . . . . . . . . . . . . . 15  |-  e  e. 
_V
8180a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  e  e.  _V )
82 gsumle.f . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : A --> B )
8382ad2antrr 740 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  F : A --> B )
8457, 69syl5ss 3429 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  e  C_  A )
8583, 84fssresd 5762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( F  |`  e ) : e --> B )
861ad2antrr 740 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  A  e.  Fin )
87 fvex 5889 . . . . . . . . . . . . . . . . 17  |-  ( 0g
`  M )  e. 
_V
8887a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( 0g `  M )  e. 
_V )
8983, 86, 88fdmfifsupp 7911 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  F finSupp  ( 0g `  M ) )
9089, 88fsuppres 7926 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( F  |`  e ) finSupp  ( 0g `  M ) )
9145, 41, 79, 81, 85, 90gsumcl 17627 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( M  gsumg  ( F  |`  e
) )  e.  B
)
9291adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  ( M  gsumg  ( F  |`  e
) )  e.  B
)
9383, 75ffvelrnd 6038 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( F `  y )  e.  B )
9493adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  ( F `  y )  e.  B )
9568, 84fssresd 5762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( G  |`  e ) : e --> B )
96 ssfi 7810 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  Fin  /\  e  C_  A )  -> 
e  e.  Fin )
9786, 84, 96syl2anc 673 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  e  e.  Fin )
9895, 97, 88fdmfifsupp 7911 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( G  |`  e ) finSupp  ( 0g `  M ) )
9945, 41, 79, 81, 95, 98gsumcl 17627 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( M  gsumg  ( G  |`  e
) )  e.  B
)
10099adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  ( M  gsumg  ( G  |`  e
) )  e.  B
)
101 simpr 468 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )
102 simpll 768 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ph )
103 gsumle.c . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  oR  .<_  G )
104103ad2antrr 740 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  F  oR  .<_  G )
105 ffn 5739 . . . . . . . . . . . . . . . 16  |-  ( F : A --> B  ->  F  Fn  A )
10682, 105syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  Fn  A )
107 ffn 5739 . . . . . . . . . . . . . . . 16  |-  ( G : A --> B  ->  G  Fn  A )
10867, 107syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G  Fn  A )
109 inidm 3632 . . . . . . . . . . . . . . 15  |-  ( A  i^i  A )  =  A
110 eqidd 2472 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  =  ( F `  y ) )
111 eqidd 2472 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  A )  ->  ( G `  y )  =  ( G `  y ) )
112106, 108, 1, 1, 109, 110, 111ofrval 6560 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  F  oR  .<_  G  /\  y  e.  A )  ->  ( F `  y )  .<_  ( G `  y
) )
113102, 104, 75, 112syl3anc 1292 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( F `  y )  .<_  ( G `  y
) )
114113adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  ( F `  y )  .<_  ( G `  y
) )
11579adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  M  e. CMnd )
11645, 49, 65, 66, 77, 92, 94, 100, 101, 114, 115omndadd2d 28545 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  (
( M  gsumg  ( F  |`  e
) ) ( +g  `  M ) ( F `
 y ) ) 
.<_  ( ( M  gsumg  ( G  |`  e ) ) ( +g  `  M ) ( G `  y
) ) )
11797adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  e  e.  Fin )
11882ad2antrr 740 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  z  e.  e )  ->  F : A --> B )
119 simplr 770 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  z  e.  e )  ->  (
e  u.  { y } )  C_  A
)
120 elun1 3592 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  e  ->  z  e.  ( e  u.  {
y } ) )
121120adantl 473 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  z  e.  e )  ->  z  e.  ( e  u.  {
y } ) )
122119, 121sseldd 3419 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  z  e.  e )  ->  z  e.  A )
123118, 122ffvelrnd 6038 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  z  e.  e )  ->  ( F `  z )  e.  B )
124123ex 441 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
( z  e.  e  ->  ( F `  z )  e.  B
) )
125124ad2antrr 740 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  (
z  e.  e  -> 
( F `  z
)  e.  B ) )
126125imp 436 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  /\  z  e.  e )  ->  ( F `  z )  e.  B )
12771a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  y  e.  _V )
128 simplr 770 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  -.  y  e.  e )
129 fveq2 5879 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  ( F `  z )  =  ( F `  y ) )
13045, 65, 115, 117, 126, 127, 128, 94, 129gsumunsn 17670 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  ( M  gsumg  ( z  e.  ( e  u.  { y } )  |->  ( F `
 z ) ) )  =  ( ( M  gsumg  ( z  e.  e 
|->  ( F `  z
) ) ) ( +g  `  M ) ( F `  y
) ) )
13183, 69feqresmpt 5933 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( F  |`  ( e  u. 
{ y } ) )  =  ( z  e.  ( e  u. 
{ y } ) 
|->  ( F `  z
) ) )
132131oveq2d 6324 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( M  gsumg  ( F  |`  (
e  u.  { y } ) ) )  =  ( M  gsumg  ( z  e.  ( e  u. 
{ y } ) 
|->  ( F `  z
) ) ) )
13383, 84feqresmpt 5933 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( F  |`  e )  =  ( z  e.  e 
|->  ( F `  z
) ) )
134133oveq2d 6324 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( M  gsumg  ( F  |`  e
) )  =  ( M  gsumg  ( z  e.  e 
|->  ( F `  z
) ) ) )
135134oveq1d 6323 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  (
( M  gsumg  ( F  |`  e
) ) ( +g  `  M ) ( F `
 y ) )  =  ( ( M 
gsumg  ( z  e.  e 
|->  ( F `  z
) ) ) ( +g  `  M ) ( F `  y
) ) )
136132, 135eqeq12d 2486 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  (
( M  gsumg  ( F  |`  (
e  u.  { y } ) ) )  =  ( ( M 
gsumg  ( F  |`  e ) ) ( +g  `  M
) ( F `  y ) )  <->  ( M  gsumg  ( z  e.  ( e  u.  { y } )  |->  ( F `  z ) ) )  =  ( ( M 
gsumg  ( z  e.  e 
|->  ( F `  z
) ) ) ( +g  `  M ) ( F `  y
) ) ) )
137136adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  (
( M  gsumg  ( F  |`  (
e  u.  { y } ) ) )  =  ( ( M 
gsumg  ( F  |`  e ) ) ( +g  `  M
) ( F `  y ) )  <->  ( M  gsumg  ( z  e.  ( e  u.  { y } )  |->  ( F `  z ) ) )  =  ( ( M 
gsumg  ( z  e.  e 
|->  ( F `  z
) ) ) ( +g  `  M ) ( F `  y
) ) ) )
138130, 137mpbird 240 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  ( M  gsumg  ( F  |`  (
e  u.  { y } ) ) )  =  ( ( M 
gsumg  ( F  |`  e ) ) ( +g  `  M
) ( F `  y ) ) )
13967adantr 472 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  ->  G : A --> B )
140139ad2antrr 740 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  z  e.  e
)  ->  G : A
--> B )
141122adantlr 729 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  z  e.  e
)  ->  z  e.  A )
142140, 141ffvelrnd 6038 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  z  e.  e
)  ->  ( G `  z )  e.  B
)
14371a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  y  e.  _V )
144 simpr 468 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  -.  y  e.  e )
145 fveq2 5879 . . . . . . . . . . . . . . . 16  |-  ( z  =  y  ->  ( G `  z )  =  ( G `  y ) )
14645, 65, 79, 97, 142, 143, 144, 76, 145gsumunsn 17670 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( M  gsumg  ( z  e.  ( e  u.  { y } )  |->  ( G `
 z ) ) )  =  ( ( M  gsumg  ( z  e.  e 
|->  ( G `  z
) ) ) ( +g  `  M ) ( G `  y
) ) )
147 simpr 468 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
( e  u.  {
y } )  C_  A )
148139, 147feqresmpt 5933 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
( G  |`  (
e  u.  { y } ) )  =  ( z  e.  ( e  u.  { y } )  |->  ( G `
 z ) ) )
149148oveq2d 6324 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
( M  gsumg  ( G  |`  (
e  u.  { y } ) ) )  =  ( M  gsumg  ( z  e.  ( e  u. 
{ y } ) 
|->  ( G `  z
) ) ) )
150 resabs1 5139 . . . . . . . . . . . . . . . . . . . . 21  |-  ( e 
C_  ( e  u. 
{ y } )  ->  ( ( G  |`  ( e  u.  {
y } ) )  |`  e )  =  ( G  |`  e )
)
15157, 150mp1i 13 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
( ( G  |`  ( e  u.  {
y } ) )  |`  e )  =  ( G  |`  e )
)
15259adantl 473 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
e  C_  A )
153139, 152feqresmpt 5933 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
( G  |`  e
)  =  ( z  e.  e  |->  ( G `
 z ) ) )
154151, 153eqtrd 2505 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
( ( G  |`  ( e  u.  {
y } ) )  |`  e )  =  ( z  e.  e  |->  ( G `  z ) ) )
155154oveq2d 6324 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
( M  gsumg  ( ( G  |`  ( e  u.  {
y } ) )  |`  e ) )  =  ( M  gsumg  ( z  e.  e 
|->  ( G `  z
) ) ) )
156 resabs1 5139 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( { y }  C_  (
e  u.  { y } )  ->  (
( G  |`  (
e  u.  { y } ) )  |`  { y } )  =  ( G  |`  { y } ) )
15770, 156mp1i 13 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
( ( G  |`  ( e  u.  {
y } ) )  |`  { y } )  =  ( G  |`  { y } ) )
15870, 147syl5ss 3429 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  ->  { y }  C_  A )
159139, 158feqresmpt 5933 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
( G  |`  { y } )  =  ( z  e.  { y }  |->  ( G `  z ) ) )
160157, 159eqtrd 2505 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
( ( G  |`  ( e  u.  {
y } ) )  |`  { y } )  =  ( z  e. 
{ y }  |->  ( G `  z ) ) )
161160oveq2d 6324 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
( M  gsumg  ( ( G  |`  ( e  u.  {
y } ) )  |`  { y } ) )  =  ( M 
gsumg  ( z  e.  {
y }  |->  ( G `
 z ) ) ) )
16235, 44syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  M  e.  Mnd )
163162adantr 472 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  ->  M  e.  Mnd )
16471a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
y  e.  _V )
16573a1i 11 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
y  e.  ( e  u.  { y } ) )
166147, 165sseldd 3419 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
y  e.  A )
167139, 166ffvelrnd 6038 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
( G `  y
)  e.  B )
168145adantl 473 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  z  =  y )  ->  ( G `  z )  =  ( G `  y ) )
16945, 163, 164, 167, 168gsumsnd 17663 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
( M  gsumg  ( z  e.  {
y }  |->  ( G `
 z ) ) )  =  ( G `
 y ) )
170161, 169eqtrd 2505 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
( M  gsumg  ( ( G  |`  ( e  u.  {
y } ) )  |`  { y } ) )  =  ( G `
 y ) )
171155, 170oveq12d 6326 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
( ( M  gsumg  ( ( G  |`  ( e  u.  { y } ) )  |`  e )
) ( +g  `  M
) ( M  gsumg  ( ( G  |`  ( e  u.  { y } ) )  |`  { y } ) ) )  =  ( ( M 
gsumg  ( z  e.  e 
|->  ( G `  z
) ) ) ( +g  `  M ) ( G `  y
) ) )
172149, 171eqeq12d 2486 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( e  u.  { y } ) 
C_  A )  -> 
( ( M  gsumg  ( G  |`  ( e  u.  {
y } ) ) )  =  ( ( M  gsumg  ( ( G  |`  ( e  u.  {
y } ) )  |`  e ) ) ( +g  `  M ) ( M  gsumg  ( ( G  |`  ( e  u.  {
y } ) )  |`  { y } ) ) )  <->  ( M  gsumg  ( z  e.  ( e  u.  { y } )  |->  ( G `  z ) ) )  =  ( ( M 
gsumg  ( z  e.  e 
|->  ( G `  z
) ) ) ( +g  `  M ) ( G `  y
) ) ) )
173172adantr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  (
( M  gsumg  ( G  |`  (
e  u.  { y } ) ) )  =  ( ( M 
gsumg  ( ( G  |`  ( e  u.  {
y } ) )  |`  e ) ) ( +g  `  M ) ( M  gsumg  ( ( G  |`  ( e  u.  {
y } ) )  |`  { y } ) ) )  <->  ( M  gsumg  ( z  e.  ( e  u.  { y } )  |->  ( G `  z ) ) )  =  ( ( M 
gsumg  ( z  e.  e 
|->  ( G `  z
) ) ) ( +g  `  M ) ( G `  y
) ) ) )
174146, 173mpbird 240 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( M  gsumg  ( G  |`  (
e  u.  { y } ) ) )  =  ( ( M 
gsumg  ( ( G  |`  ( e  u.  {
y } ) )  |`  e ) ) ( +g  `  M ) ( M  gsumg  ( ( G  |`  ( e  u.  {
y } ) )  |`  { y } ) ) ) )
17557, 150ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( G  |`  ( e  u.  { y } ) )  |`  e )  =  ( G  |`  e )
176175oveq2i 6319 . . . . . . . . . . . . . . 15  |-  ( M 
gsumg  ( ( G  |`  ( e  u.  {
y } ) )  |`  e ) )  =  ( M  gsumg  ( G  |`  e
) )
17770, 156ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( G  |`  ( e  u.  { y } ) )  |`  { y } )  =  ( G  |`  { y } )
178177oveq2i 6319 . . . . . . . . . . . . . . 15  |-  ( M 
gsumg  ( ( G  |`  ( e  u.  {
y } ) )  |`  { y } ) )  =  ( M 
gsumg  ( G  |`  { y } ) )
179176, 178oveq12i 6320 . . . . . . . . . . . . . 14  |-  ( ( M  gsumg  ( ( G  |`  ( e  u.  {
y } ) )  |`  e ) ) ( +g  `  M ) ( M  gsumg  ( ( G  |`  ( e  u.  {
y } ) )  |`  { y } ) ) )  =  ( ( M  gsumg  ( G  |`  e
) ) ( +g  `  M ) ( M 
gsumg  ( G  |`  { y } ) ) )
180174, 179syl6eq 2521 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( M  gsumg  ( G  |`  (
e  u.  { y } ) ) )  =  ( ( M 
gsumg  ( G  |`  e ) ) ( +g  `  M
) ( M  gsumg  ( G  |`  { y } ) ) ) )
18170, 69syl5ss 3429 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  { y }  C_  A )
18268, 181feqresmpt 5933 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( G  |`  { y } )  =  ( x  e.  { y } 
|->  ( G `  x
) ) )
183182oveq2d 6324 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( M  gsumg  ( G  |`  { y } ) )  =  ( M  gsumg  ( x  e.  {
y }  |->  ( G `
 x ) ) ) )
184 cmnmnd 17523 . . . . . . . . . . . . . . . . 17  |-  ( M  e. CMnd  ->  M  e.  Mnd )
18579, 184syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  M  e.  Mnd )
186 fveq2 5879 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  ( G `  x )  =  ( G `  y ) )
18745, 186gsumsn 17665 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  Mnd  /\  y  e.  _V  /\  ( G `  y )  e.  B )  ->  ( M  gsumg  ( x  e.  {
y }  |->  ( G `
 x ) ) )  =  ( G `
 y ) )
188185, 143, 76, 187syl3anc 1292 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( M  gsumg  ( x  e.  {
y }  |->  ( G `
 x ) ) )  =  ( G `
 y ) )
189183, 188eqtrd 2505 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( M  gsumg  ( G  |`  { y } ) )  =  ( G `  y
) )
190189oveq2d 6324 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  (
( M  gsumg  ( G  |`  e
) ) ( +g  `  M ) ( M 
gsumg  ( G  |`  { y } ) ) )  =  ( ( M 
gsumg  ( G  |`  e ) ) ( +g  `  M
) ( G `  y ) ) )
191180, 190eqtrd 2505 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
e  u.  { y } )  C_  A
)  /\  -.  y  e.  e )  ->  ( M  gsumg  ( G  |`  (
e  u.  { y } ) ) )  =  ( ( M 
gsumg  ( G  |`  e ) ) ( +g  `  M
) ( G `  y ) ) )
192191adantr 472 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  ( M  gsumg  ( G  |`  (
e  u.  { y } ) ) )  =  ( ( M 
gsumg  ( G  |`  e ) ) ( +g  `  M
) ( G `  y ) ) )
193116, 138, 1923brtr4d 4426 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( e  u.  {
y } )  C_  A )  /\  -.  y  e.  e )  /\  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  ( M  gsumg  ( F  |`  (
e  u.  { y } ) ) ) 
.<_  ( M  gsumg  ( G  |`  (
e  u.  { y } ) ) ) )
19462, 63, 64, 193syl21anc 1291 . . . . . . . . 9  |-  ( ( ( ( e  e. 
Fin  /\  -.  y  e.  e )  /\  ( ph  /\  ( e  u. 
{ y } ) 
C_  A ) )  /\  ( M  gsumg  ( F  |`  e ) )  .<_  ( M  gsumg  ( G  |`  e
) ) )  -> 
( M  gsumg  ( F  |`  (
e  u.  { y } ) ) ) 
.<_  ( M  gsumg  ( G  |`  (
e  u.  { y } ) ) ) )
195194exp31 615 . . . . . . . 8  |-  ( ( e  e.  Fin  /\  -.  y  e.  e
)  ->  ( ( ph  /\  ( e  u. 
{ y } ) 
C_  A )  -> 
( ( M  gsumg  ( F  |`  e ) )  .<_  ( M  gsumg  ( G  |`  e
) )  ->  ( M  gsumg  ( F  |`  (
e  u.  { y } ) ) ) 
.<_  ( M  gsumg  ( G  |`  (
e  u.  { y } ) ) ) ) ) )
196195a2d 28 . . . . . . 7  |-  ( ( e  e.  Fin  /\  -.  y  e.  e
)  ->  ( (
( ph  /\  (
e  u.  { y } )  C_  A
)  ->  ( M  gsumg  ( F  |`  e )
)  .<_  ( M  gsumg  ( G  |`  e ) ) )  ->  ( ( ph  /\  ( e  u.  {
y } )  C_  A )  ->  ( M  gsumg  ( F  |`  (
e  u.  { y } ) ) ) 
.<_  ( M  gsumg  ( G  |`  (
e  u.  { y } ) ) ) ) ) )
19761, 196syl5 32 . . . . . 6  |-  ( ( e  e.  Fin  /\  -.  y  e.  e
)  ->  ( (
( ph  /\  e  C_  A )  ->  ( M  gsumg  ( F  |`  e
) )  .<_  ( M 
gsumg  ( G  |`  e ) ) )  ->  (
( ph  /\  (
e  u.  { y } )  C_  A
)  ->  ( M  gsumg  ( F  |`  ( e  u.  { y } ) ) )  .<_  ( M 
gsumg  ( G  |`  ( e  u.  { y } ) ) ) ) ) )
19810, 18, 26, 34, 56, 197findcard2s 7830 . . . . 5  |-  ( A  e.  Fin  ->  (
( ph  /\  A  C_  A )  ->  ( M  gsumg  ( F  |`  A ) )  .<_  ( M  gsumg  ( G  |`  A )
) ) )
199198imp 436 . . . 4  |-  ( ( A  e.  Fin  /\  ( ph  /\  A  C_  A ) )  -> 
( M  gsumg  ( F  |`  A ) )  .<_  ( M  gsumg  ( G  |`  A )
) )
2002, 199mpanr2 698 . . 3  |-  ( ( A  e.  Fin  /\  ph )  ->  ( M  gsumg  ( F  |`  A )
)  .<_  ( M  gsumg  ( G  |`  A ) ) )
2011, 200mpancom 682 . 2  |-  ( ph  ->  ( M  gsumg  ( F  |`  A ) )  .<_  ( M  gsumg  ( G  |`  A )
) )
202 fnresdm 5695 . . . 4  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
203106, 202syl 17 . . 3  |-  ( ph  ->  ( F  |`  A )  =  F )
204203oveq2d 6324 . 2  |-  ( ph  ->  ( M  gsumg  ( F  |`  A ) )  =  ( M 
gsumg  F ) )
205 fnresdm 5695 . . . 4  |-  ( G  Fn  A  ->  ( G  |`  A )  =  G )
206108, 205syl 17 . . 3  |-  ( ph  ->  ( G  |`  A )  =  G )
207206oveq2d 6324 . 2  |-  ( ph  ->  ( M  gsumg  ( G  |`  A ) )  =  ( M 
gsumg  G ) )
208201, 204, 2073brtr3d 4425 1  |-  ( ph  ->  ( M  gsumg  F )  .<_  ( M 
gsumg  G ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   _Vcvv 3031    u. cun 3388    C_ wss 3390   (/)c0 3722   {csn 3959   class class class wbr 4395    |-> cmpt 4454    |` cres 4841    Fn wfn 5584   -->wf 5585   ` cfv 5589  (class class class)co 6308    oRcofr 6549   Fincfn 7587   Basecbs 15199   +g cplusg 15268   lecple 15275   0gc0g 15416    gsumg cgsu 15417   Posetcpo 16263  Tosetctos 16357   Mndcmnd 16613  CMndccmn 17508  oMndcomnd 28534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-ofr 6551  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-oi 8043  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-fzo 11943  df-seq 12252  df-hash 12554  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-0g 15418  df-gsum 15419  df-mre 15570  df-mrc 15571  df-acs 15573  df-preset 16251  df-poset 16269  df-toset 16358  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-omnd 28536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator