Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumesum Structured version   Unicode version

Theorem gsumesum 26515
Description: Relate a group sum on  ( RR*ss  ( 0 [,] +oo ) ) to a finite extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.)
Hypotheses
Ref Expression
gsumesum.0  |-  F/ k
ph
gsumesum.1  |-  ( ph  ->  A  e.  Fin )
gsumesum.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )
Assertion
Ref Expression
gsumesum  |-  ( ph  ->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  = Σ* k  e.  A B )
Distinct variable group:    A, k
Allowed substitution hints:    ph( k)    B( k)

Proof of Theorem gsumesum
Dummy variables  a  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumesum.0 . . 3  |-  F/ k
ph
2 nfcv 2584 . . 3  |-  F/_ k A
3 gsumesum.1 . . 3  |-  ( ph  ->  A  e.  Fin )
4 gsumesum.2 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ( 0 [,] +oo ) )
5 eqidd 2444 . . 3  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) )
61, 2, 3, 4, 5esumval 26505 . 2  |-  ( ph  -> Σ* k  e.  A B  =  sup ( ran  (
x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) ) ,  RR* ,  <  )
)
7 xrltso 11123 . . . 4  |-  <  Or  RR*
87a1i 11 . . 3  |-  ( ph  ->  <  Or  RR* )
9 iccssxr 11383 . . . 4  |-  ( 0 [,] +oo )  C_  RR*
10 xrge0base 26151 . . . . 5  |-  ( 0 [,] +oo )  =  ( Base `  ( RR*ss  ( 0 [,] +oo ) ) )
11 xrge00 26152 . . . . 5  |-  0  =  ( 0g `  ( RR*ss  ( 0 [,] +oo ) ) )
12 xrge0cmn 17860 . . . . . 6  |-  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd
1312a1i 11 . . . . 5  |-  ( ph  ->  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd )
14 nfcv 2584 . . . . . 6  |-  F/_ k
( 0 [,] +oo )
15 eqid 2443 . . . . . 6  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
161, 2, 14, 4, 15fmptdF 25977 . . . . 5  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> ( 0 [,] +oo ) )
173, 16fisuppfi 7633 . . . . 5  |-  ( ph  ->  ( `' ( k  e.  A  |->  B )
" ( _V  \  { 0 } ) )  e.  Fin )
1810, 11, 13, 3, 16, 17gsumclOLD 16405 . . . 4  |-  ( ph  ->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  e.  ( 0 [,] +oo ) )
199, 18sseldi 3359 . . 3  |-  ( ph  ->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  e. 
RR* )
20 pwidg 3878 . . . . . . 7  |-  ( A  e.  Fin  ->  A  e.  ~P A )
213, 20syl 16 . . . . . 6  |-  ( ph  ->  A  e.  ~P A
)
2221, 3elind 3545 . . . . 5  |-  ( ph  ->  A  e.  ( ~P A  i^i  Fin )
)
23 eqidd 2444 . . . . 5  |-  ( ph  ->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )
24 mpteq1 4377 . . . . . . . 8  |-  ( x  =  A  ->  (
k  e.  x  |->  B )  =  ( k  e.  A  |->  B ) )
2524oveq2d 6112 . . . . . . 7  |-  ( x  =  A  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )
2625eqeq2d 2454 . . . . . 6  |-  ( x  =  A  ->  (
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) )  <->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) ) )
2726rspcev 3078 . . . . 5  |-  ( ( A  e.  ( ~P A  i^i  Fin )  /\  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )  ->  E. x  e.  ( ~P A  i^i  Fin ) ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) )
2822, 23, 27syl2anc 661 . . . 4  |-  ( ph  ->  E. x  e.  ( ~P A  i^i  Fin ) ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) )
29 eqid 2443 . . . . 5  |-  ( x  e.  ( ~P A  i^i  Fin )  |->  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) )  =  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) )
30 ovex 6121 . . . . 5  |-  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  e. 
_V
3129, 30elrnmpti 5095 . . . 4  |-  ( ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  A  |->  B ) )  e. 
ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) )  <->  E. x  e.  ( ~P A  i^i  Fin )
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) )
3228, 31sylibr 212 . . 3  |-  ( ph  ->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  e. 
ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )
33 simpr 461 . . . . . 6  |-  ( (
ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  ->  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )
34 mpteq1 4377 . . . . . . . . 9  |-  ( x  =  a  ->  (
k  e.  x  |->  B )  =  ( k  e.  a  |->  B ) )
3534oveq2d 6112 . . . . . . . 8  |-  ( x  =  a  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) ) )
3635cbvmptv 4388 . . . . . . 7  |-  ( x  e.  ( ~P A  i^i  Fin )  |->  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) )  =  ( a  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) )
37 ovex 6121 . . . . . . 7  |-  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  e. 
_V
3836, 37elrnmpti 5095 . . . . . 6  |-  ( y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) )  <->  E. a  e.  ( ~P A  i^i  Fin )
y  =  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) )
3933, 38sylib 196 . . . . 5  |-  ( (
ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  ->  E. a  e.  ( ~P A  i^i  Fin ) y  =  ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  a 
|->  B ) ) )
4012a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd )
41 vex 2980 . . . . . . . . . . . 12  |-  a  e. 
_V
4241a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  a  e.  _V )
43 nfv 1673 . . . . . . . . . . . . 13  |-  F/ k  a  e.  ( ~P A  i^i  Fin )
441, 43nfan 1861 . . . . . . . . . . . 12  |-  F/ k ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )
45 nfcv 2584 . . . . . . . . . . . 12  |-  F/_ k
a
46 simpll 753 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  a )  ->  ph )
47 inss1 3575 . . . . . . . . . . . . . . . . 17  |-  ( ~P A  i^i  Fin )  C_ 
~P A
4847sseli 3357 . . . . . . . . . . . . . . . 16  |-  ( a  e.  ( ~P A  i^i  Fin )  ->  a  e.  ~P A )
4948elpwid 3875 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( ~P A  i^i  Fin )  ->  a  C_  A )
5049ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  a )  ->  a  C_  A )
51 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  a )  ->  k  e.  a )
5250, 51sseldd 3362 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  a )  ->  k  e.  A )
5346, 52, 4syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  a )  ->  B  e.  ( 0 [,] +oo ) )
54 eqid 2443 . . . . . . . . . . . 12  |-  ( k  e.  a  |->  B )  =  ( k  e.  a  |->  B )
5544, 45, 14, 53, 54fmptdF 25977 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
k  e.  a  |->  B ) : a --> ( 0 [,] +oo )
)
56 inss2 3576 . . . . . . . . . . . . 13  |-  ( ~P A  i^i  Fin )  C_ 
Fin
57 simpr 461 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  a  e.  ( ~P A  i^i  Fin ) )
5856, 57sseldi 3359 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  a  e.  Fin )
5958, 55fisuppfi 7633 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  ( `' ( k  e.  a  |->  B ) "
( _V  \  {
0 } ) )  e.  Fin )
6010, 11, 40, 42, 55, 59gsumclOLD 16405 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  e.  ( 0 [,] +oo ) )
619, 60sseldi 3359 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  e. 
RR* )
623adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  A  e.  Fin )
63 difexg 4445 . . . . . . . . . . . 12  |-  ( A  e.  Fin  ->  ( A  \  a )  e. 
_V )
6462, 63syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  ( A  \  a )  e. 
_V )
65 nfcv 2584 . . . . . . . . . . . 12  |-  F/_ k
( A  \  a
)
66 simpll 753 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  ( A  \  a
) )  ->  ph )
67 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  ( A  \  a
) )  ->  k  e.  ( A  \  a
) )
6867eldifad 3345 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  ( A  \  a
) )  ->  k  e.  A )
6966, 68, 4syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  ( A  \  a
) )  ->  B  e.  ( 0 [,] +oo ) )
70 eqid 2443 . . . . . . . . . . . 12  |-  ( k  e.  ( A  \ 
a )  |->  B )  =  ( k  e.  ( A  \  a
)  |->  B )
7144, 65, 14, 69, 70fmptdF 25977 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
k  e.  ( A 
\  a )  |->  B ) : ( A 
\  a ) --> ( 0 [,] +oo )
)
72 diffi 7548 . . . . . . . . . . . . 13  |-  ( A  e.  Fin  ->  ( A  \  a )  e. 
Fin )
7362, 72syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  ( A  \  a )  e. 
Fin )
7473, 71fisuppfi 7633 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  ( `' ( k  e.  ( A  \  a
)  |->  B ) "
( _V  \  {
0 } ) )  e.  Fin )
7510, 11, 40, 64, 71, 74gsumclOLD 16405 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) )  e.  ( 0 [,] +oo ) )
769, 75sseldi 3359 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) )  e. 
RR* )
77 elxrge0 11399 . . . . . . . . . . 11  |-  ( ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  ( A  \  a ) 
|->  B ) )  e.  ( 0 [,] +oo ) 
<->  ( ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) )  e. 
RR*  /\  0  <_  ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) ) )
7877simprbi 464 . . . . . . . . . 10  |-  ( ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  ( A  \  a ) 
|->  B ) )  e.  ( 0 [,] +oo )  ->  0  <_  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) )
7975, 78syl 16 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  0  <_  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) )
80 xraddge02 26055 . . . . . . . . . 10  |-  ( ( ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) )  e. 
RR*  /\  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) )  e. 
RR* )  ->  (
0  <_  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) )  -> 
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) +e ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) ) ) )
8180imp 429 . . . . . . . . 9  |-  ( ( ( ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  e. 
RR*  /\  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) )  e. 
RR* )  /\  0  <_  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) )  ->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) +e ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) ) )
8261, 76, 79, 81syl21anc 1217 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) +e ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) ) )
8382adantlr 714 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) +e ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) ) )
84 simpll 753 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  ph )
8549adantl 466 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  a  C_  A )
86 xrge0plusg 26153 . . . . . . . . . 10  |-  +e 
=  ( +g  `  ( RR*ss  ( 0 [,] +oo ) ) )
8712a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  a  C_  A )  ->  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd )
883adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  a  C_  A )  ->  A  e.  Fin )
8916adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  a  C_  A )  ->  (
k  e.  A  |->  B ) : A --> ( 0 [,] +oo ) )
9017adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  a  C_  A )  ->  ( `' ( k  e.  A  |->  B ) "
( _V  \  {
0 } ) )  e.  Fin )
91 disjdif 3756 . . . . . . . . . . 11  |-  ( a  i^i  ( A  \ 
a ) )  =  (/)
9291a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  a  C_  A )  ->  (
a  i^i  ( A  \  a ) )  =  (/) )
93 undif 3764 . . . . . . . . . . . . 13  |-  ( a 
C_  A  <->  ( a  u.  ( A  \  a
) )  =  A )
9493biimpi 194 . . . . . . . . . . . 12  |-  ( a 
C_  A  ->  (
a  u.  ( A 
\  a ) )  =  A )
9594eqcomd 2448 . . . . . . . . . . 11  |-  ( a 
C_  A  ->  A  =  ( a  u.  ( A  \  a
) ) )
9695adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  a  C_  A )  ->  A  =  ( a  u.  ( A  \  a
) ) )
9710, 11, 86, 87, 88, 89, 90, 92, 96gsumsplitOLD 16426 . . . . . . . . 9  |-  ( (
ph  /\  a  C_  A )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  =  ( ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e.  A  |->  B )  |`  a ) ) +e ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e.  A  |->  B )  |`  ( A  \  a
) ) ) ) )
98 resmpt 5161 . . . . . . . . . . . 12  |-  ( a 
C_  A  ->  (
( k  e.  A  |->  B )  |`  a
)  =  ( k  e.  a  |->  B ) )
9998oveq2d 6112 . . . . . . . . . . 11  |-  ( a 
C_  A  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e.  A  |->  B )  |`  a ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) ) )
10099adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  a  C_  A )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e.  A  |->  B )  |`  a ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) ) )
101 difss 3488 . . . . . . . . . . . . 13  |-  ( A 
\  a )  C_  A
102 resmpt 5161 . . . . . . . . . . . . 13  |-  ( ( A  \  a ) 
C_  A  ->  (
( k  e.  A  |->  B )  |`  ( A  \  a ) )  =  ( k  e.  ( A  \  a
)  |->  B ) )
103101, 102ax-mp 5 . . . . . . . . . . . 12  |-  ( ( k  e.  A  |->  B )  |`  ( A  \  a ) )  =  ( k  e.  ( A  \  a ) 
|->  B )
104103oveq2i 6107 . . . . . . . . . . 11  |-  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e.  A  |->  B )  |`  ( A  \  a
) ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) )
105104a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  a  C_  A )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e.  A  |->  B )  |`  ( A  \  a
) ) )  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) )
106100, 105oveq12d 6114 . . . . . . . . 9  |-  ( (
ph  /\  a  C_  A )  ->  (
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( ( k  e.  A  |->  B )  |`  a ) ) +e ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e.  A  |->  B )  |`  ( A  \  a
) ) ) )  =  ( ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) +e ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) ) )
10797, 106eqtrd 2475 . . . . . . . 8  |-  ( (
ph  /\  a  C_  A )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  =  ( ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) +e ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) ) )
10884, 85, 107syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  =  ( ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) ) +e ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  ( A  \  a ) 
|->  B ) ) ) )
10983, 108breqtrrd 4323 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  /\  a  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )
110109ralrimiva 2804 . . . . 5  |-  ( (
ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  ->  A. a  e.  ( ~P A  i^i  Fin ) ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )
111 r19.29r 2863 . . . . . 6  |-  ( ( E. a  e.  ( ~P A  i^i  Fin ) y  =  ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  a 
|->  B ) )  /\  A. a  e.  ( ~P A  i^i  Fin )
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )  ->  E. a  e.  ( ~P A  i^i  Fin ) ( y  =  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) )  /\  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) ) )
112 breq1 4300 . . . . . . . 8  |-  ( y  =  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  -> 
( y  <_  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  <->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) ) )
113112biimpar 485 . . . . . . 7  |-  ( ( y  =  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  a 
|->  B ) )  /\  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )  ->  y  <_  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) ) )
114113rexlimivw 2842 . . . . . 6  |-  ( E. a  e.  ( ~P A  i^i  Fin )
( y  =  ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  a 
|->  B ) )  /\  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )  ->  y  <_  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) ) )
115111, 114syl 16 . . . . 5  |-  ( ( E. a  e.  ( ~P A  i^i  Fin ) y  =  ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  a 
|->  B ) )  /\  A. a  e.  ( ~P A  i^i  Fin )
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  a 
|->  B ) )  <_ 
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) ) )  ->  y  <_  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) ) )
11639, 110, 115syl2anc 661 . . . 4  |-  ( (
ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  ->  y  <_  ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  A  |->  B ) ) )
11719adantr 465 . . . . 5  |-  ( (
ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  ->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  e. 
RR* )
11812a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd )
119 simpr 461 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  x  e.  ( ~P A  i^i  Fin ) )
120 nfv 1673 . . . . . . . . . . . 12  |-  F/ k  x  e.  ( ~P A  i^i  Fin )
1211, 120nfan 1861 . . . . . . . . . . 11  |-  F/ k ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )
122 nfcv 2584 . . . . . . . . . . 11  |-  F/_ k
x
123 simpll 753 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  x )  ->  ph )
12447sseli 3357 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  e.  ~P A )
125124ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  x )  ->  x  e.  ~P A )
126125elpwid 3875 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  x )  ->  x  C_  A )
127 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  x )  ->  k  e.  x )
128126, 127sseldd 3362 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  x )  ->  k  e.  A )
129123, 128, 4syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( ~P A  i^i  Fin ) )  /\  k  e.  x )  ->  B  e.  ( 0 [,] +oo ) )
130 eqid 2443 . . . . . . . . . . 11  |-  ( k  e.  x  |->  B )  =  ( k  e.  x  |->  B )
131121, 122, 14, 129, 130fmptdF 25977 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  (
k  e.  x  |->  B ) : x --> ( 0 [,] +oo ) )
13256, 119sseldi 3359 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  x  e.  Fin )
133132, 131fisuppfi 7633 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  ( `' ( k  e.  x  |->  B ) "
( _V  \  {
0 } ) )  e.  Fin )
13410, 11, 118, 119, 131, 133gsumclOLD 16405 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  e.  ( 0 [,] +oo ) )
1359, 134sseldi 3359 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  Fin ) )  ->  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  e. 
RR* )
136135ralrimiva 2804 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( ~P A  i^i  Fin ) ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) )  e. 
RR* )
13729rnmptss 5877 . . . . . . 7  |-  ( A. x  e.  ( ~P A  i^i  Fin ) ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  x  |->  B ) )  e. 
RR*  ->  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) 
C_  RR* )
138136, 137syl 16 . . . . . 6  |-  ( ph  ->  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) 
C_  RR* )
139138sselda 3361 . . . . 5  |-  ( (
ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  ->  y  e.  RR* )
140 xrltnle 9448 . . . . . 6  |-  ( ( ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  e. 
RR*  /\  y  e.  RR* )  ->  ( (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  < 
y  <->  -.  y  <_  ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( k  e.  A  |->  B ) ) ) )
141140con2bid 329 . . . . 5  |-  ( ( ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  e. 
RR*  /\  y  e.  RR* )  ->  ( y  <_  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  <->  -.  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  < 
y ) )
142117, 139, 141syl2anc 661 . . . 4  |-  ( (
ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  ->  ( y  <_  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  <->  -.  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  < 
y ) )
143116, 142mpbid 210 . . 3  |-  ( (
ph  /\  y  e.  ran  ( x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  x  |->  B ) ) ) )  ->  -.  (
( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) )  < 
y )
1448, 19, 32, 143supmax 7720 . 2  |-  ( ph  ->  sup ( ran  (
x  e.  ( ~P A  i^i  Fin )  |->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  x  |->  B ) ) ) ,  RR* ,  <  )  =  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  A  |->  B ) ) )
1456, 144eqtr2d 2476 1  |-  ( ph  ->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  A  |->  B ) )  = Σ* k  e.  A B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   F/wnf 1589    e. wcel 1756   A.wral 2720   E.wrex 2721   _Vcvv 2977    \ cdif 3330    u. cun 3331    i^i cin 3332    C_ wss 3333   (/)c0 3642   ~Pcpw 3865   {csn 3882   class class class wbr 4297    e. cmpt 4355    Or wor 4645   `'ccnv 4844   ran crn 4846    |` cres 4847   "cima 4848   -->wf 5419  (class class class)co 6096   Fincfn 7315   supcsup 7695   0cc0 9287   +oocpnf 9420   RR*cxr 9422    < clt 9423    <_ cle 9424   +ecxad 11092   [,]cicc 11308   ↾s cress 14180    gsumg cgsu 14384   RR*scxrs 14443  CMndccmn 16282  Σ*cesum 26488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-iin 4179  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-of 6325  df-om 6482  df-1st 6582  df-2nd 6583  df-supp 6696  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-er 7106  df-map 7221  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-fsupp 7626  df-fi 7666  df-sup 7696  df-oi 7729  df-card 8114  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-4 10387  df-5 10388  df-6 10389  df-7 10390  df-8 10391  df-9 10392  df-10 10393  df-n0 10585  df-z 10652  df-dec 10761  df-uz 10867  df-q 10959  df-xadd 11095  df-ioo 11309  df-ioc 11310  df-ico 11311  df-icc 11312  df-fz 11443  df-fzo 11554  df-seq 11812  df-hash 12109  df-struct 14181  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-mulr 14257  df-tset 14262  df-ple 14263  df-ds 14265  df-rest 14366  df-topn 14367  df-0g 14385  df-gsum 14386  df-topgen 14387  df-ordt 14444  df-xrs 14445  df-mre 14529  df-mrc 14530  df-acs 14532  df-ps 15375  df-tsr 15376  df-mnd 15420  df-submnd 15470  df-cntz 15840  df-cmn 16284  df-fbas 17819  df-fg 17820  df-top 18508  df-bases 18510  df-topon 18511  df-topsp 18512  df-ntr 18629  df-nei 18707  df-cn 18836  df-haus 18924  df-fil 19424  df-fm 19516  df-flim 19517  df-flf 19518  df-tsms 19702  df-esum 26489
This theorem is referenced by:  esumlub  26516
  Copyright terms: Public domain W3C validator