MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumdixpOLD Structured version   Unicode version

Theorem gsumdixpOLD 17452
Description: Distribute a binary product of sums to a sum of binary products in a ring. (Contributed by Mario Carneiro, 8-Mar-2015.) Obsolete version of gsumdixp 17453 as of 10-Jul-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
gsumdixp.b  |-  B  =  ( Base `  R
)
gsumdixp.t  |-  .x.  =  ( .r `  R )
gsumdixp.z  |-  .0.  =  ( 0g `  R )
gsumdixp.i  |-  ( ph  ->  I  e.  V )
gsumdixp.j  |-  ( ph  ->  J  e.  W )
gsumdixp.r  |-  ( ph  ->  R  e.  Ring )
gsumdixp.x  |-  ( (
ph  /\  x  e.  I )  ->  X  e.  B )
gsumdixp.y  |-  ( (
ph  /\  y  e.  J )  ->  Y  e.  B )
gsumdixpOLD.xf  |-  ( ph  ->  ( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) )  e.  Fin )
gsumdixpOLD.yf  |-  ( ph  ->  ( `' ( y  e.  J  |->  Y )
" ( _V  \  {  .0.  } ) )  e.  Fin )
Assertion
Ref Expression
gsumdixpOLD  |-  ( ph  ->  ( ( R  gsumg  ( x  e.  I  |->  X ) )  .x.  ( R 
gsumg  ( y  e.  J  |->  Y ) ) )  =  ( R  gsumg  ( x  e.  I ,  y  e.  J  |->  ( X 
.x.  Y ) ) ) )
Distinct variable groups:    ph, x, y   
x, B, y    x, I, y    x, J, y   
x, R    x,  .x. , y    y, X    x, Y
Allowed substitution hints:    R( y)    V( x, y)    W( x, y)    X( x)    Y( y)    .0. ( x, y)

Proof of Theorem gsumdixpOLD
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumdixp.b . . . 4  |-  B  =  ( Base `  R
)
2 gsumdixp.z . . . 4  |-  .0.  =  ( 0g `  R )
3 gsumdixp.r . . . . 5  |-  ( ph  ->  R  e.  Ring )
4 ringcmn 17424 . . . . 5  |-  ( R  e.  Ring  ->  R  e. CMnd
)
53, 4syl 16 . . . 4  |-  ( ph  ->  R  e. CMnd )
6 gsumdixp.i . . . 4  |-  ( ph  ->  I  e.  V )
7 gsumdixp.j . . . . 5  |-  ( ph  ->  J  e.  W )
87adantr 463 . . . 4  |-  ( (
ph  /\  i  e.  I )  ->  J  e.  W )
93adantr 463 . . . . 5  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  ->  R  e.  Ring )
10 gsumdixp.x . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  X  e.  B )
11 eqid 2454 . . . . . . 7  |-  ( x  e.  I  |->  X )  =  ( x  e.  I  |->  X )
1210, 11fmptd 6031 . . . . . 6  |-  ( ph  ->  ( x  e.  I  |->  X ) : I --> B )
13 simpl 455 . . . . . 6  |-  ( ( i  e.  I  /\  j  e.  J )  ->  i  e.  I )
14 ffvelrn 6005 . . . . . 6  |-  ( ( ( x  e.  I  |->  X ) : I --> B  /\  i  e.  I )  ->  (
( x  e.  I  |->  X ) `  i
)  e.  B )
1512, 13, 14syl2an 475 . . . . 5  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( ( x  e.  I  |->  X ) `  i )  e.  B
)
16 gsumdixp.y . . . . . . 7  |-  ( (
ph  /\  y  e.  J )  ->  Y  e.  B )
17 eqid 2454 . . . . . . 7  |-  ( y  e.  J  |->  Y )  =  ( y  e.  J  |->  Y )
1816, 17fmptd 6031 . . . . . 6  |-  ( ph  ->  ( y  e.  J  |->  Y ) : J --> B )
19 simpr 459 . . . . . 6  |-  ( ( i  e.  I  /\  j  e.  J )  ->  j  e.  J )
20 ffvelrn 6005 . . . . . 6  |-  ( ( ( y  e.  J  |->  Y ) : J --> B  /\  j  e.  J
)  ->  ( (
y  e.  J  |->  Y ) `  j )  e.  B )
2118, 19, 20syl2an 475 . . . . 5  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( ( y  e.  J  |->  Y ) `  j )  e.  B
)
22 gsumdixp.t . . . . . 6  |-  .x.  =  ( .r `  R )
231, 22ringcl 17407 . . . . 5  |-  ( ( R  e.  Ring  /\  (
( x  e.  I  |->  X ) `  i
)  e.  B  /\  ( ( y  e.  J  |->  Y ) `  j )  e.  B
)  ->  ( (
( x  e.  I  |->  X ) `  i
)  .x.  ( (
y  e.  J  |->  Y ) `  j ) )  e.  B )
249, 15, 21, 23syl3anc 1226 . . . 4  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )  e.  B )
25 gsumdixpOLD.xf . . . . 5  |-  ( ph  ->  ( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) )  e.  Fin )
26 gsumdixpOLD.yf . . . . 5  |-  ( ph  ->  ( `' ( y  e.  J  |->  Y )
" ( _V  \  {  .0.  } ) )  e.  Fin )
27 xpfi 7783 . . . . 5  |-  ( ( ( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) )  e.  Fin  /\  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) )  e. 
Fin )  ->  (
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) )  X.  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) )  e. 
Fin )
2825, 26, 27syl2anc 659 . . . 4  |-  ( ph  ->  ( ( `' ( x  e.  I  |->  X ) " ( _V 
\  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) )  e.  Fin )
29 ianor 486 . . . . . . 7  |-  ( -.  ( i  e.  ( `' ( x  e.  I  |->  X ) "
( _V  \  {  .0.  } ) )  /\  j  e.  ( `' ( y  e.  J  |->  Y ) " ( _V  \  {  .0.  }
) ) )  <->  ( -.  i  e.  ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) )  \/  -.  j  e.  ( `' ( y  e.  J  |->  Y ) " ( _V  \  {  .0.  }
) ) ) )
30 brxp 5019 . . . . . . 7  |-  ( i ( ( `' ( x  e.  I  |->  X ) " ( _V 
\  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) j  <->  ( i  e.  ( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) )  /\  j  e.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )
3129, 30xchnxbir 307 . . . . . 6  |-  ( -.  i ( ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) j  <->  ( -.  i  e.  ( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) )  \/  -.  j  e.  ( `' ( y  e.  J  |->  Y )
" ( _V  \  {  .0.  } ) ) ) )
32 simprl 754 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
i  e.  I )
33 eldif 3471 . . . . . . . . . . . 12  |-  ( i  e.  ( I  \ 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  <->  ( i  e.  I  /\  -.  i  e.  ( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) ) )
3433biimpri 206 . . . . . . . . . . 11  |-  ( ( i  e.  I  /\  -.  i  e.  ( `' ( x  e.  I  |->  X ) "
( _V  \  {  .0.  } ) ) )  ->  i  e.  ( I  \  ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) ) ) )
3532, 34sylan 469 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  i  e.  ( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  ->  i  e.  ( I  \  ( `' ( x  e.  I  |->  X ) "
( _V  \  {  .0.  } ) ) ) )
3612adantr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( x  e.  I  |->  X ) : I --> B )
37 ssid 3508 . . . . . . . . . . . 12  |-  ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) )  C_  ( `' ( x  e.  I  |->  X ) "
( _V  \  {  .0.  } ) )
3837a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) 
C_  ( `' ( x  e.  I  |->  X ) " ( _V 
\  {  .0.  }
) ) )
3936, 38suppssrOLD 5997 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  i  e.  ( I  \  ( `' ( x  e.  I  |->  X ) "
( _V  \  {  .0.  } ) ) ) )  ->  ( (
x  e.  I  |->  X ) `  i )  =  .0.  )
4035, 39syldan 468 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  i  e.  ( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  ->  ( (
x  e.  I  |->  X ) `  i )  =  .0.  )
4140oveq1d 6285 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  i  e.  ( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  ->  ( (
( x  e.  I  |->  X ) `  i
)  .x.  ( (
y  e.  J  |->  Y ) `  j ) )  =  (  .0. 
.x.  ( ( y  e.  J  |->  Y ) `
 j ) ) )
421, 22, 2ringlz 17430 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
( y  e.  J  |->  Y ) `  j
)  e.  B )  ->  (  .0.  .x.  ( ( y  e.  J  |->  Y ) `  j ) )  =  .0.  )
439, 21, 42syl2anc 659 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
(  .0.  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  .0.  )
4443adantr 463 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  i  e.  ( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  ->  (  .0.  .x.  ( ( y  e.  J  |->  Y ) `  j ) )  =  .0.  )
4541, 44eqtrd 2495 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  i  e.  ( `' ( x  e.  I  |->  X )
" ( _V  \  {  .0.  } ) ) )  ->  ( (
( x  e.  I  |->  X ) `  i
)  .x.  ( (
y  e.  J  |->  Y ) `  j ) )  =  .0.  )
46 simprr 755 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
j  e.  J )
47 eldif 3471 . . . . . . . . . . . 12  |-  ( j  e.  ( J  \ 
( `' ( y  e.  J  |->  Y )
" ( _V  \  {  .0.  } ) ) )  <->  ( j  e.  J  /\  -.  j  e.  ( `' ( y  e.  J  |->  Y )
" ( _V  \  {  .0.  } ) ) ) )
4847biimpri 206 . . . . . . . . . . 11  |-  ( ( j  e.  J  /\  -.  j  e.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) )  ->  j  e.  ( J  \  ( `' ( y  e.  J  |->  Y ) " ( _V  \  {  .0.  }
) ) ) )
4946, 48sylan 469 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  j  e.  ( `' ( y  e.  J  |->  Y )
" ( _V  \  {  .0.  } ) ) )  ->  j  e.  ( J  \  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )
5018adantr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( y  e.  J  |->  Y ) : J --> B )
51 ssid 3508 . . . . . . . . . . . 12  |-  ( `' ( y  e.  J  |->  Y ) " ( _V  \  {  .0.  }
) )  C_  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) )
5251a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( `' ( y  e.  J  |->  Y )
" ( _V  \  {  .0.  } ) ) 
C_  ( `' ( y  e.  J  |->  Y ) " ( _V 
\  {  .0.  }
) ) )
5350, 52suppssrOLD 5997 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  j  e.  ( J  \  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) )  ->  ( (
y  e.  J  |->  Y ) `  j )  =  .0.  )
5449, 53syldan 468 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  j  e.  ( `' ( y  e.  J  |->  Y )
" ( _V  \  {  .0.  } ) ) )  ->  ( (
y  e.  J  |->  Y ) `  j )  =  .0.  )
5554oveq2d 6286 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  j  e.  ( `' ( y  e.  J  |->  Y )
" ( _V  \  {  .0.  } ) ) )  ->  ( (
( x  e.  I  |->  X ) `  i
)  .x.  ( (
y  e.  J  |->  Y ) `  j ) )  =  ( ( ( x  e.  I  |->  X ) `  i
)  .x.  .0.  )
)
561, 22, 2ringrz 17431 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
( x  e.  I  |->  X ) `  i
)  e.  B )  ->  ( ( ( x  e.  I  |->  X ) `  i ) 
.x.  .0.  )  =  .0.  )
579, 15, 56syl2anc 659 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( ( ( x  e.  I  |->  X ) `
 i )  .x.  .0.  )  =  .0.  )
5857adantr 463 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  j  e.  ( `' ( y  e.  J  |->  Y )
" ( _V  \  {  .0.  } ) ) )  ->  ( (
( x  e.  I  |->  X ) `  i
)  .x.  .0.  )  =  .0.  )
5955, 58eqtrd 2495 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  j  e.  ( `' ( y  e.  J  |->  Y )
" ( _V  \  {  .0.  } ) ) )  ->  ( (
( x  e.  I  |->  X ) `  i
)  .x.  ( (
y  e.  J  |->  Y ) `  j ) )  =  .0.  )
6045, 59jaodan 783 . . . . . 6  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  ( -.  i  e.  ( `' ( x  e.  I  |->  X ) " ( _V  \  {  .0.  }
) )  \/  -.  j  e.  ( `' ( y  e.  J  |->  Y ) " ( _V  \  {  .0.  }
) ) ) )  ->  ( ( ( x  e.  I  |->  X ) `  i ) 
.x.  ( ( y  e.  J  |->  Y ) `
 j ) )  =  .0.  )
6131, 60sylan2b 473 . . . . 5  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  i
( ( `' ( x  e.  I  |->  X ) " ( _V 
\  {  .0.  }
) )  X.  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) ) ) j )  ->  (
( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  .0.  )
6261anasss 645 . . . 4  |-  ( (
ph  /\  ( (
i  e.  I  /\  j  e.  J )  /\  -.  i ( ( `' ( x  e.  I  |->  X ) "
( _V  \  {  .0.  } ) )  X.  ( `' ( y  e.  J  |->  Y )
" ( _V  \  {  .0.  } ) ) ) j ) )  ->  ( ( ( x  e.  I  |->  X ) `  i ) 
.x.  ( ( y  e.  J  |->  Y ) `
 j ) )  =  .0.  )
631, 2, 5, 6, 8, 24, 28, 62gsum2d2 17198 . . 3  |-  ( ph  ->  ( R  gsumg  ( i  e.  I ,  j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) )  =  ( R 
gsumg  ( i  e.  I  |->  ( R  gsumg  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) ) ) ) )
64 nffvmpt1 5856 . . . . . . 7  |-  F/_ x
( ( x  e.  I  |->  X ) `  i )
65 nfcv 2616 . . . . . . 7  |-  F/_ x  .x.
66 nfcv 2616 . . . . . . 7  |-  F/_ x
( ( y  e.  J  |->  Y ) `  j )
6764, 65, 66nfov 6296 . . . . . 6  |-  F/_ x
( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )
68 nfcv 2616 . . . . . . 7  |-  F/_ y
( ( x  e.  I  |->  X ) `  i )
69 nfcv 2616 . . . . . . 7  |-  F/_ y  .x.
70 nffvmpt1 5856 . . . . . . 7  |-  F/_ y
( ( y  e.  J  |->  Y ) `  j )
7168, 69, 70nfov 6296 . . . . . 6  |-  F/_ y
( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )
72 nfcv 2616 . . . . . 6  |-  F/_ i
( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) )
73 nfcv 2616 . . . . . 6  |-  F/_ j
( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) )
74 fveq2 5848 . . . . . . 7  |-  ( i  =  x  ->  (
( x  e.  I  |->  X ) `  i
)  =  ( ( x  e.  I  |->  X ) `  x ) )
75 fveq2 5848 . . . . . . 7  |-  ( j  =  y  ->  (
( y  e.  J  |->  Y ) `  j
)  =  ( ( y  e.  J  |->  Y ) `  y ) )
7674, 75oveqan12d 6289 . . . . . 6  |-  ( ( i  =  x  /\  j  =  y )  ->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )  =  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) )
7767, 71, 72, 73, 76cbvmpt2 6349 . . . . 5  |-  ( i  e.  I ,  j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  i
)  .x.  ( (
y  e.  J  |->  Y ) `  j ) ) )  =  ( x  e.  I ,  y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  y
) ) )
78 simp2 995 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  x  e.  I )
79103adant3 1014 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  X  e.  B )
8011fvmpt2 5939 . . . . . . . 8  |-  ( ( x  e.  I  /\  X  e.  B )  ->  ( ( x  e.  I  |->  X ) `  x )  =  X )
8178, 79, 80syl2anc 659 . . . . . . 7  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  ( (
x  e.  I  |->  X ) `  x )  =  X )
82 simp3 996 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  y  e.  J )
83163adant2 1013 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  Y  e.  B )
8417fvmpt2 5939 . . . . . . . 8  |-  ( ( y  e.  J  /\  Y  e.  B )  ->  ( ( y  e.  J  |->  Y ) `  y )  =  Y )
8582, 83, 84syl2anc 659 . . . . . . 7  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  ( (
y  e.  J  |->  Y ) `  y )  =  Y )
8681, 85oveq12d 6288 . . . . . 6  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  ( (
( x  e.  I  |->  X ) `  x
)  .x.  ( (
y  e.  J  |->  Y ) `  y ) )  =  ( X 
.x.  Y ) )
8786mpt2eq3dva 6334 . . . . 5  |-  ( ph  ->  ( x  e.  I ,  y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) )  =  ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y ) ) )
8877, 87syl5eq 2507 . . . 4  |-  ( ph  ->  ( i  e.  I ,  j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) )  =  ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y ) ) )
8988oveq2d 6286 . . 3  |-  ( ph  ->  ( R  gsumg  ( i  e.  I ,  j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) )  =  ( R 
gsumg  ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y
) ) ) )
90 nfcv 2616 . . . . . . 7  |-  F/_ x R
91 nfcv 2616 . . . . . . 7  |-  F/_ x  gsumg
92 nfcv 2616 . . . . . . . 8  |-  F/_ x J
9392, 67nfmpt 4527 . . . . . . 7  |-  F/_ x
( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) )
9490, 91, 93nfov 6296 . . . . . 6  |-  F/_ x
( R  gsumg  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) )
95 nfcv 2616 . . . . . 6  |-  F/_ i
( R  gsumg  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) ) )
9674oveq1d 6285 . . . . . . . . 9  |-  ( i  =  x  ->  (
( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  ( ( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  j
) ) )
9796mpteq2dv 4526 . . . . . . . 8  |-  ( i  =  x  ->  (
j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) ) )  =  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) )
98 nfcv 2616 . . . . . . . . . 10  |-  F/_ y
( ( x  e.  I  |->  X ) `  x )
9998, 69, 70nfov 6296 . . . . . . . . 9  |-  F/_ y
( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )
10075oveq2d 6286 . . . . . . . . 9  |-  ( j  =  y  ->  (
( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  ( ( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  y
) ) )
10199, 73, 100cbvmpt 4529 . . . . . . . 8  |-  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  x
)  .x.  ( (
y  e.  J  |->  Y ) `  j ) ) )  =  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  y
) ) )
10297, 101syl6eq 2511 . . . . . . 7  |-  ( i  =  x  ->  (
j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) ) )  =  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) ) )
103102oveq2d 6286 . . . . . 6  |-  ( i  =  x  ->  ( R  gsumg  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) )  =  ( R 
gsumg  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) ) ) )
10494, 95, 103cbvmpt 4529 . . . . 5  |-  ( i  e.  I  |->  ( R 
gsumg  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) ) ) )
105863expa 1194 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  I )  /\  y  e.  J )  ->  (
( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  y
) )  =  ( X  .x.  Y ) )
106105mpteq2dva 4525 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  (
y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  y
) ) )  =  ( y  e.  J  |->  ( X  .x.  Y
) ) )
107106oveq2d 6286 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( R  gsumg  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) ) )  =  ( R 
gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) )
108107mpteq2dva 4525 . . . . 5  |-  ( ph  ->  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) ) )
109104, 108syl5eq 2507 . . . 4  |-  ( ph  ->  ( i  e.  I  |->  ( R  gsumg  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) ) )
110109oveq2d 6286 . . 3  |-  ( ph  ->  ( R  gsumg  ( i  e.  I  |->  ( R  gsumg  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) ) ) )  =  ( R  gsumg  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) ) ) )
11163, 89, 1103eqtr3d 2503 . 2  |-  ( ph  ->  ( R  gsumg  ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y
) ) )  =  ( R  gsumg  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) ) ) )
112 eqid 2454 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
1133adantr 463 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Ring )
1147adantr 463 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  J  e.  W )
11516adantlr 712 . . . . 5  |-  ( ( ( ph  /\  x  e.  I )  /\  y  e.  J )  ->  Y  e.  B )
11626adantr 463 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( `' ( y  e.  J  |->  Y ) "
( _V  \  {  .0.  } ) )  e. 
Fin )
1171, 2, 112, 22, 113, 114, 10, 115, 116gsummulc2OLD 17450 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) )  =  ( X  .x.  ( R  gsumg  ( y  e.  J  |->  Y ) ) ) )
118117mpteq2dva 4525 . . 3  |-  ( ph  ->  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) )  =  ( x  e.  I  |->  ( X  .x.  ( R  gsumg  ( y  e.  J  |->  Y ) ) ) ) )
119118oveq2d 6286 . 2  |-  ( ph  ->  ( R  gsumg  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) ) )  =  ( R 
gsumg  ( x  e.  I  |->  ( X  .x.  ( R  gsumg  ( y  e.  J  |->  Y ) ) ) ) ) )
1201, 2, 5, 7, 18, 26gsumclOLD 17125 . . 3  |-  ( ph  ->  ( R  gsumg  ( y  e.  J  |->  Y ) )  e.  B )
1211, 2, 112, 22, 3, 6, 120, 10, 25gsummulc1OLD 17449 . 2  |-  ( ph  ->  ( R  gsumg  ( x  e.  I  |->  ( X  .x.  ( R  gsumg  ( y  e.  J  |->  Y ) ) ) ) )  =  ( ( R  gsumg  ( x  e.  I  |->  X ) )  .x.  ( R  gsumg  ( y  e.  J  |->  Y ) ) ) )
122111, 119, 1213eqtrrd 2500 1  |-  ( ph  ->  ( ( R  gsumg  ( x  e.  I  |->  X ) )  .x.  ( R 
gsumg  ( y  e.  J  |->  Y ) ) )  =  ( R  gsumg  ( x  e.  I ,  y  e.  J  |->  ( X 
.x.  Y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 366    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   _Vcvv 3106    \ cdif 3458    C_ wss 3461   {csn 4016   class class class wbr 4439    |-> cmpt 4497    X. cxp 4986   `'ccnv 4987   "cima 4991   -->wf 5566   ` cfv 5570  (class class class)co 6270    |-> cmpt2 6272   Fincfn 7509   Basecbs 14716   +g cplusg 14784   .rcmulr 14785   0gc0g 14929    gsumg cgsu 14930  CMndccmn 16997   Ringcrg 17393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-fzo 11800  df-seq 12090  df-hash 12388  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-0g 14931  df-gsum 14932  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-mhm 16165  df-submnd 16166  df-grp 16256  df-minusg 16257  df-mulg 16259  df-ghm 16464  df-cntz 16554  df-cmn 16999  df-abl 17000  df-mgp 17337  df-ur 17349  df-ring 17395
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator