MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumdixp Structured version   Unicode version

Theorem gsumdixp 17580
Description: Distribute a binary product of sums to a sum of binary products in a ring. (Contributed by Mario Carneiro, 8-Mar-2015.) (Revised by AV, 10-Jul-2019.)
Hypotheses
Ref Expression
gsumdixp.b  |-  B  =  ( Base `  R
)
gsumdixp.t  |-  .x.  =  ( .r `  R )
gsumdixp.z  |-  .0.  =  ( 0g `  R )
gsumdixp.i  |-  ( ph  ->  I  e.  V )
gsumdixp.j  |-  ( ph  ->  J  e.  W )
gsumdixp.r  |-  ( ph  ->  R  e.  Ring )
gsumdixp.x  |-  ( (
ph  /\  x  e.  I )  ->  X  e.  B )
gsumdixp.y  |-  ( (
ph  /\  y  e.  J )  ->  Y  e.  B )
gsumdixp.xf  |-  ( ph  ->  ( x  e.  I  |->  X ) finSupp  .0.  )
gsumdixp.yf  |-  ( ph  ->  ( y  e.  J  |->  Y ) finSupp  .0.  )
Assertion
Ref Expression
gsumdixp  |-  ( ph  ->  ( ( R  gsumg  ( x  e.  I  |->  X ) )  .x.  ( R 
gsumg  ( y  e.  J  |->  Y ) ) )  =  ( R  gsumg  ( x  e.  I ,  y  e.  J  |->  ( X 
.x.  Y ) ) ) )
Distinct variable groups:    ph, x, y   
x, B, y    x, I, y    x, J, y   
x, R    x,  .x. , y    y, X    x, Y
Allowed substitution hints:    R( y)    V( x, y)    W( x, y)    X( x)    Y( y)    .0. ( x, y)

Proof of Theorem gsumdixp
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumdixp.b . . . 4  |-  B  =  ( Base `  R
)
2 gsumdixp.z . . . 4  |-  .0.  =  ( 0g `  R )
3 gsumdixp.r . . . . 5  |-  ( ph  ->  R  e.  Ring )
4 ringcmn 17551 . . . . 5  |-  ( R  e.  Ring  ->  R  e. CMnd
)
53, 4syl 17 . . . 4  |-  ( ph  ->  R  e. CMnd )
6 gsumdixp.i . . . 4  |-  ( ph  ->  I  e.  V )
7 gsumdixp.j . . . . 5  |-  ( ph  ->  J  e.  W )
87adantr 465 . . . 4  |-  ( (
ph  /\  i  e.  I )  ->  J  e.  W )
93adantr 465 . . . . 5  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  ->  R  e.  Ring )
10 gsumdixp.x . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  X  e.  B )
11 eqid 2404 . . . . . . 7  |-  ( x  e.  I  |->  X )  =  ( x  e.  I  |->  X )
1210, 11fmptd 6035 . . . . . 6  |-  ( ph  ->  ( x  e.  I  |->  X ) : I --> B )
13 simpl 457 . . . . . 6  |-  ( ( i  e.  I  /\  j  e.  J )  ->  i  e.  I )
14 ffvelrn 6009 . . . . . 6  |-  ( ( ( x  e.  I  |->  X ) : I --> B  /\  i  e.  I )  ->  (
( x  e.  I  |->  X ) `  i
)  e.  B )
1512, 13, 14syl2an 477 . . . . 5  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( ( x  e.  I  |->  X ) `  i )  e.  B
)
16 gsumdixp.y . . . . . . 7  |-  ( (
ph  /\  y  e.  J )  ->  Y  e.  B )
17 eqid 2404 . . . . . . 7  |-  ( y  e.  J  |->  Y )  =  ( y  e.  J  |->  Y )
1816, 17fmptd 6035 . . . . . 6  |-  ( ph  ->  ( y  e.  J  |->  Y ) : J --> B )
19 simpr 461 . . . . . 6  |-  ( ( i  e.  I  /\  j  e.  J )  ->  j  e.  J )
20 ffvelrn 6009 . . . . . 6  |-  ( ( ( y  e.  J  |->  Y ) : J --> B  /\  j  e.  J
)  ->  ( (
y  e.  J  |->  Y ) `  j )  e.  B )
2118, 19, 20syl2an 477 . . . . 5  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( ( y  e.  J  |->  Y ) `  j )  e.  B
)
22 gsumdixp.t . . . . . 6  |-  .x.  =  ( .r `  R )
231, 22ringcl 17534 . . . . 5  |-  ( ( R  e.  Ring  /\  (
( x  e.  I  |->  X ) `  i
)  e.  B  /\  ( ( y  e.  J  |->  Y ) `  j )  e.  B
)  ->  ( (
( x  e.  I  |->  X ) `  i
)  .x.  ( (
y  e.  J  |->  Y ) `  j ) )  e.  B )
249, 15, 21, 23syl3anc 1232 . . . 4  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )  e.  B )
25 gsumdixp.xf . . . . . 6  |-  ( ph  ->  ( x  e.  I  |->  X ) finSupp  .0.  )
2625fsuppimpd 7872 . . . . 5  |-  ( ph  ->  ( ( x  e.  I  |->  X ) supp  .0.  )  e.  Fin )
27 gsumdixp.yf . . . . . 6  |-  ( ph  ->  ( y  e.  J  |->  Y ) finSupp  .0.  )
2827fsuppimpd 7872 . . . . 5  |-  ( ph  ->  ( ( y  e.  J  |->  Y ) supp  .0.  )  e.  Fin )
29 xpfi 7827 . . . . 5  |-  ( ( ( ( x  e.  I  |->  X ) supp  .0.  )  e.  Fin  /\  (
( y  e.  J  |->  Y ) supp  .0.  )  e.  Fin )  ->  (
( ( x  e.  I  |->  X ) supp  .0.  )  X.  ( ( y  e.  J  |->  Y ) supp 
.0.  ) )  e. 
Fin )
3026, 28, 29syl2anc 661 . . . 4  |-  ( ph  ->  ( ( ( x  e.  I  |->  X ) supp 
.0.  )  X.  (
( y  e.  J  |->  Y ) supp  .0.  )
)  e.  Fin )
31 ianor 488 . . . . . . 7  |-  ( -.  ( i  e.  ( ( x  e.  I  |->  X ) supp  .0.  )  /\  j  e.  (
( y  e.  J  |->  Y ) supp  .0.  )
)  <->  ( -.  i  e.  ( ( x  e.  I  |->  X ) supp  .0.  )  \/  -.  j  e.  ( ( y  e.  J  |->  Y ) supp  .0.  ) ) )
32 brxp 4856 . . . . . . 7  |-  ( i ( ( ( x  e.  I  |->  X ) supp 
.0.  )  X.  (
( y  e.  J  |->  Y ) supp  .0.  )
) j  <->  ( i  e.  ( ( x  e.  I  |->  X ) supp  .0.  )  /\  j  e.  ( ( y  e.  J  |->  Y ) supp  .0.  )
) )
3331, 32xchnxbir 309 . . . . . 6  |-  ( -.  i ( ( ( x  e.  I  |->  X ) supp  .0.  )  X.  ( ( y  e.  J  |->  Y ) supp  .0.  ) ) j  <->  ( -.  i  e.  ( (
x  e.  I  |->  X ) supp  .0.  )  \/  -.  j  e.  (
( y  e.  J  |->  Y ) supp  .0.  )
) )
34 simprl 758 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
i  e.  I )
35 eldif 3426 . . . . . . . . . . . 12  |-  ( i  e.  ( I  \ 
( ( x  e.  I  |->  X ) supp  .0.  ) )  <->  ( i  e.  I  /\  -.  i  e.  ( ( x  e.  I  |->  X ) supp  .0.  ) ) )
3635biimpri 208 . . . . . . . . . . 11  |-  ( ( i  e.  I  /\  -.  i  e.  (
( x  e.  I  |->  X ) supp  .0.  )
)  ->  i  e.  ( I  \  (
( x  e.  I  |->  X ) supp  .0.  )
) )
3734, 36sylan 471 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  i  e.  ( ( x  e.  I  |->  X ) supp  .0.  ) )  ->  i  e.  ( I  \  (
( x  e.  I  |->  X ) supp  .0.  )
) )
3812adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( x  e.  I  |->  X ) : I --> B )
39 ssid 3463 . . . . . . . . . . . 12  |-  ( ( x  e.  I  |->  X ) supp  .0.  )  C_  ( ( x  e.  I  |->  X ) supp  .0.  )
4039a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( ( x  e.  I  |->  X ) supp  .0.  )  C_  ( ( x  e.  I  |->  X ) supp 
.0.  ) )
416adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  ->  I  e.  V )
42 fvex 5861 . . . . . . . . . . . . 13  |-  ( 0g
`  R )  e. 
_V
432, 42eqeltri 2488 . . . . . . . . . . . 12  |-  .0.  e.  _V
4443a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  ->  .0.  e.  _V )
4538, 40, 41, 44suppssr 6936 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  i  e.  ( I  \  (
( x  e.  I  |->  X ) supp  .0.  )
) )  ->  (
( x  e.  I  |->  X ) `  i
)  =  .0.  )
4637, 45syldan 470 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  i  e.  ( ( x  e.  I  |->  X ) supp  .0.  ) )  ->  (
( x  e.  I  |->  X ) `  i
)  =  .0.  )
4746oveq1d 6295 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  i  e.  ( ( x  e.  I  |->  X ) supp  .0.  ) )  ->  (
( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  (  .0.  .x.  ( (
y  e.  J  |->  Y ) `  j ) ) )
481, 22, 2ringlz 17557 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
( y  e.  J  |->  Y ) `  j
)  e.  B )  ->  (  .0.  .x.  ( ( y  e.  J  |->  Y ) `  j ) )  =  .0.  )
499, 21, 48syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
(  .0.  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  .0.  )
5049adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  i  e.  ( ( x  e.  I  |->  X ) supp  .0.  ) )  ->  (  .0.  .x.  ( ( y  e.  J  |->  Y ) `
 j ) )  =  .0.  )
5147, 50eqtrd 2445 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  i  e.  ( ( x  e.  I  |->  X ) supp  .0.  ) )  ->  (
( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  .0.  )
52 simprr 760 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
j  e.  J )
53 eldif 3426 . . . . . . . . . . . 12  |-  ( j  e.  ( J  \ 
( ( y  e.  J  |->  Y ) supp  .0.  ) )  <->  ( j  e.  J  /\  -.  j  e.  ( ( y  e.  J  |->  Y ) supp  .0.  ) ) )
5453biimpri 208 . . . . . . . . . . 11  |-  ( ( j  e.  J  /\  -.  j  e.  (
( y  e.  J  |->  Y ) supp  .0.  )
)  ->  j  e.  ( J  \  (
( y  e.  J  |->  Y ) supp  .0.  )
) )
5552, 54sylan 471 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  j  e.  ( ( y  e.  J  |->  Y ) supp  .0.  ) )  ->  j  e.  ( J  \  (
( y  e.  J  |->  Y ) supp  .0.  )
) )
5618adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( y  e.  J  |->  Y ) : J --> B )
57 ssid 3463 . . . . . . . . . . . 12  |-  ( ( y  e.  J  |->  Y ) supp  .0.  )  C_  ( ( y  e.  J  |->  Y ) supp  .0.  )
5857a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( ( y  e.  J  |->  Y ) supp  .0.  )  C_  ( ( y  e.  J  |->  Y ) supp 
.0.  ) )
597adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  ->  J  e.  W )
6056, 58, 59, 44suppssr 6936 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  j  e.  ( J  \  (
( y  e.  J  |->  Y ) supp  .0.  )
) )  ->  (
( y  e.  J  |->  Y ) `  j
)  =  .0.  )
6155, 60syldan 470 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  j  e.  ( ( y  e.  J  |->  Y ) supp  .0.  ) )  ->  (
( y  e.  J  |->  Y ) `  j
)  =  .0.  )
6261oveq2d 6296 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  j  e.  ( ( y  e.  J  |->  Y ) supp  .0.  ) )  ->  (
( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  ( ( ( x  e.  I  |->  X ) `  i )  .x.  .0.  ) )
631, 22, 2ringrz 17558 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
( x  e.  I  |->  X ) `  i
)  e.  B )  ->  ( ( ( x  e.  I  |->  X ) `  i ) 
.x.  .0.  )  =  .0.  )
649, 15, 63syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  J ) )  -> 
( ( ( x  e.  I  |->  X ) `
 i )  .x.  .0.  )  =  .0.  )
6564adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  j  e.  ( ( y  e.  J  |->  Y ) supp  .0.  ) )  ->  (
( ( x  e.  I  |->  X ) `  i )  .x.  .0.  )  =  .0.  )
6662, 65eqtrd 2445 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  j  e.  ( ( y  e.  J  |->  Y ) supp  .0.  ) )  ->  (
( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  .0.  )
6751, 66jaodan 788 . . . . . 6  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  ( -.  i  e.  ( (
x  e.  I  |->  X ) supp  .0.  )  \/  -.  j  e.  (
( y  e.  J  |->  Y ) supp  .0.  )
) )  ->  (
( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  .0.  )
6833, 67sylan2b 475 . . . . 5  |-  ( ( ( ph  /\  (
i  e.  I  /\  j  e.  J )
)  /\  -.  i
( ( ( x  e.  I  |->  X ) supp 
.0.  )  X.  (
( y  e.  J  |->  Y ) supp  .0.  )
) j )  -> 
( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )  =  .0.  )
6968anasss 647 . . . 4  |-  ( (
ph  /\  ( (
i  e.  I  /\  j  e.  J )  /\  -.  i ( ( ( x  e.  I  |->  X ) supp  .0.  )  X.  ( ( y  e.  J  |->  Y ) supp  .0.  ) ) j ) )  ->  ( (
( x  e.  I  |->  X ) `  i
)  .x.  ( (
y  e.  J  |->  Y ) `  j ) )  =  .0.  )
701, 2, 5, 6, 8, 24, 30, 69gsum2d2 17325 . . 3  |-  ( ph  ->  ( R  gsumg  ( i  e.  I ,  j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) )  =  ( R 
gsumg  ( i  e.  I  |->  ( R  gsumg  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) ) ) ) )
71 nffvmpt1 5859 . . . . . . 7  |-  F/_ x
( ( x  e.  I  |->  X ) `  i )
72 nfcv 2566 . . . . . . 7  |-  F/_ x  .x.
73 nfcv 2566 . . . . . . 7  |-  F/_ x
( ( y  e.  J  |->  Y ) `  j )
7471, 72, 73nfov 6306 . . . . . 6  |-  F/_ x
( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )
75 nfcv 2566 . . . . . . 7  |-  F/_ y
( ( x  e.  I  |->  X ) `  i )
76 nfcv 2566 . . . . . . 7  |-  F/_ y  .x.
77 nffvmpt1 5859 . . . . . . 7  |-  F/_ y
( ( y  e.  J  |->  Y ) `  j )
7875, 76, 77nfov 6306 . . . . . 6  |-  F/_ y
( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )
79 nfcv 2566 . . . . . 6  |-  F/_ i
( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) )
80 nfcv 2566 . . . . . 6  |-  F/_ j
( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) )
81 fveq2 5851 . . . . . . 7  |-  ( i  =  x  ->  (
( x  e.  I  |->  X ) `  i
)  =  ( ( x  e.  I  |->  X ) `  x ) )
82 fveq2 5851 . . . . . . 7  |-  ( j  =  y  ->  (
( y  e.  J  |->  Y ) `  j
)  =  ( ( y  e.  J  |->  Y ) `  y ) )
8381, 82oveqan12d 6299 . . . . . 6  |-  ( ( i  =  x  /\  j  =  y )  ->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )  =  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) )
8474, 78, 79, 80, 83cbvmpt2 6359 . . . . 5  |-  ( i  e.  I ,  j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  i
)  .x.  ( (
y  e.  J  |->  Y ) `  j ) ) )  =  ( x  e.  I ,  y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  y
) ) )
85 simp2 1000 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  x  e.  I )
86103adant3 1019 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  X  e.  B )
8711fvmpt2 5943 . . . . . . . 8  |-  ( ( x  e.  I  /\  X  e.  B )  ->  ( ( x  e.  I  |->  X ) `  x )  =  X )
8885, 86, 87syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  ( (
x  e.  I  |->  X ) `  x )  =  X )
89 simp3 1001 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  y  e.  J )
90163adant2 1018 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  Y  e.  B )
9117fvmpt2 5943 . . . . . . . 8  |-  ( ( y  e.  J  /\  Y  e.  B )  ->  ( ( y  e.  J  |->  Y ) `  y )  =  Y )
9289, 90, 91syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  ( (
y  e.  J  |->  Y ) `  y )  =  Y )
9388, 92oveq12d 6298 . . . . . 6  |-  ( (
ph  /\  x  e.  I  /\  y  e.  J
)  ->  ( (
( x  e.  I  |->  X ) `  x
)  .x.  ( (
y  e.  J  |->  Y ) `  y ) )  =  ( X 
.x.  Y ) )
9493mpt2eq3dva 6344 . . . . 5  |-  ( ph  ->  ( x  e.  I ,  y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) )  =  ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y ) ) )
9584, 94syl5eq 2457 . . . 4  |-  ( ph  ->  ( i  e.  I ,  j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) )  =  ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y ) ) )
9695oveq2d 6296 . . 3  |-  ( ph  ->  ( R  gsumg  ( i  e.  I ,  j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) )  =  ( R 
gsumg  ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y
) ) ) )
97 nfcv 2566 . . . . . . 7  |-  F/_ x R
98 nfcv 2566 . . . . . . 7  |-  F/_ x  gsumg
99 nfcv 2566 . . . . . . . 8  |-  F/_ x J
10099, 74nfmpt 4485 . . . . . . 7  |-  F/_ x
( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) )
10197, 98, 100nfov 6306 . . . . . 6  |-  F/_ x
( R  gsumg  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) )
102 nfcv 2566 . . . . . 6  |-  F/_ i
( R  gsumg  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) ) )
10381oveq1d 6295 . . . . . . . . 9  |-  ( i  =  x  ->  (
( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  ( ( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  j
) ) )
104103mpteq2dv 4484 . . . . . . . 8  |-  ( i  =  x  ->  (
j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) ) )  =  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) )
105 nfcv 2566 . . . . . . . . . 10  |-  F/_ y
( ( x  e.  I  |->  X ) `  x )
106105, 76, 77nfov 6306 . . . . . . . . 9  |-  F/_ y
( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  j ) )
10782oveq2d 6296 . . . . . . . . 9  |-  ( j  =  y  ->  (
( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  j
) )  =  ( ( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  y
) ) )
108106, 80, 107cbvmpt 4488 . . . . . . . 8  |-  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  x
)  .x.  ( (
y  e.  J  |->  Y ) `  j ) ) )  =  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  y
) ) )
109104, 108syl6eq 2461 . . . . . . 7  |-  ( i  =  x  ->  (
j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  i )  .x.  (
( y  e.  J  |->  Y ) `  j
) ) )  =  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) ) )
110109oveq2d 6296 . . . . . 6  |-  ( i  =  x  ->  ( R  gsumg  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) )  =  ( R 
gsumg  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) ) ) )
111101, 102, 110cbvmpt 4488 . . . . 5  |-  ( i  e.  I  |->  ( R 
gsumg  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) ) ) )
112933expa 1199 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  I )  /\  y  e.  J )  ->  (
( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  y
) )  =  ( X  .x.  Y ) )
113112mpteq2dva 4483 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  (
y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `  x )  .x.  (
( y  e.  J  |->  Y ) `  y
) ) )  =  ( y  e.  J  |->  ( X  .x.  Y
) ) )
114113oveq2d 6296 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( R  gsumg  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) ) )  =  ( R 
gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) )
115114mpteq2dva 4483 . . . . 5  |-  ( ph  ->  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 x )  .x.  ( ( y  e.  J  |->  Y ) `  y ) ) ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) ) )
116111, 115syl5eq 2457 . . . 4  |-  ( ph  ->  ( i  e.  I  |->  ( R  gsumg  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) ) )
117116oveq2d 6296 . . 3  |-  ( ph  ->  ( R  gsumg  ( i  e.  I  |->  ( R  gsumg  ( j  e.  J  |->  ( ( ( x  e.  I  |->  X ) `
 i )  .x.  ( ( y  e.  J  |->  Y ) `  j ) ) ) ) ) )  =  ( R  gsumg  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) ) ) )
11870, 96, 1173eqtr3d 2453 . 2  |-  ( ph  ->  ( R  gsumg  ( x  e.  I ,  y  e.  J  |->  ( X  .x.  Y
) ) )  =  ( R  gsumg  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) ) ) )
119 eqid 2404 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
1203adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Ring )
1217adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  J  e.  W )
12216adantlr 715 . . . . 5  |-  ( ( ( ph  /\  x  e.  I )  /\  y  e.  J )  ->  Y  e.  B )
12327adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
y  e.  J  |->  Y ) finSupp  .0.  )
1241, 2, 119, 22, 120, 121, 10, 122, 123gsummulc2 17575 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) )  =  ( X  .x.  ( R  gsumg  ( y  e.  J  |->  Y ) ) ) )
125124mpteq2dva 4483 . . 3  |-  ( ph  ->  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) )  =  ( x  e.  I  |->  ( X  .x.  ( R  gsumg  ( y  e.  J  |->  Y ) ) ) ) )
126125oveq2d 6296 . 2  |-  ( ph  ->  ( R  gsumg  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  ( X  .x.  Y
) ) ) ) )  =  ( R 
gsumg  ( x  e.  I  |->  ( X  .x.  ( R  gsumg  ( y  e.  J  |->  Y ) ) ) ) ) )
1271, 2, 5, 7, 18, 27gsumcl 17249 . . 3  |-  ( ph  ->  ( R  gsumg  ( y  e.  J  |->  Y ) )  e.  B )
1281, 2, 119, 22, 3, 6, 127, 10, 25gsummulc1 17574 . 2  |-  ( ph  ->  ( R  gsumg  ( x  e.  I  |->  ( X  .x.  ( R  gsumg  ( y  e.  J  |->  Y ) ) ) ) )  =  ( ( R  gsumg  ( x  e.  I  |->  X ) )  .x.  ( R  gsumg  ( y  e.  J  |->  Y ) ) ) )
129118, 126, 1283eqtrrd 2450 1  |-  ( ph  ->  ( ( R  gsumg  ( x  e.  I  |->  X ) )  .x.  ( R 
gsumg  ( y  e.  J  |->  Y ) ) )  =  ( R  gsumg  ( x  e.  I ,  y  e.  J  |->  ( X 
.x.  Y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844   _Vcvv 3061    \ cdif 3413    C_ wss 3416   class class class wbr 4397    |-> cmpt 4455    X. cxp 4823   -->wf 5567   ` cfv 5571  (class class class)co 6280    |-> cmpt2 6282   supp csupp 6904   Fincfn 7556   finSupp cfsupp 7865   Basecbs 14843   +g cplusg 14911   .rcmulr 14912   0gc0g 15056    gsumg cgsu 15057  CMndccmn 17124   Ringcrg 17520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-inf2 8093  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-int 4230  df-iun 4275  df-iin 4276  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-se 4785  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-isom 5580  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-of 6523  df-om 6686  df-1st 6786  df-2nd 6787  df-supp 6905  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-oadd 7173  df-er 7350  df-map 7461  df-en 7557  df-dom 7558  df-sdom 7559  df-fin 7560  df-fsupp 7866  df-oi 7971  df-card 8354  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-nn 10579  df-2 10637  df-n0 10839  df-z 10908  df-uz 11130  df-fz 11729  df-fzo 11857  df-seq 12154  df-hash 12455  df-ndx 14846  df-slot 14847  df-base 14848  df-sets 14849  df-ress 14850  df-plusg 14924  df-0g 15058  df-gsum 15059  df-mre 15202  df-mrc 15203  df-acs 15205  df-mgm 16198  df-sgrp 16237  df-mnd 16247  df-mhm 16292  df-submnd 16293  df-grp 16383  df-minusg 16384  df-mulg 16386  df-ghm 16591  df-cntz 16681  df-cmn 17126  df-abl 17127  df-mgp 17464  df-ur 17476  df-ring 17522
This theorem is referenced by:  evlslem2  18502
  Copyright terms: Public domain W3C validator