MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumconst Structured version   Unicode version

Theorem gsumconst 17505
Description: Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gsumconst.b  |-  B  =  ( Base `  G
)
gsumconst.m  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
gsumconst  |-  ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  ->  ( G  gsumg  ( k  e.  A  |->  X ) )  =  ( ( # `  A
)  .x.  X )
)
Distinct variable groups:    A, k    B, k    k, G    k, X
Allowed substitution hint:    .x. ( k)

Proof of Theorem gsumconst
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1010 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  A  =  (/) )  ->  X  e.  B )
2 gsumconst.b . . . . . 6  |-  B  =  ( Base `  G
)
3 eqid 2423 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
4 gsumconst.m . . . . . 6  |-  .x.  =  (.g
`  G )
52, 3, 4mulg0 16701 . . . . 5  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
61, 5syl 17 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  A  =  (/) )  -> 
( 0  .x.  X
)  =  ( 0g
`  G ) )
7 fveq2 5820 . . . . . . 7  |-  ( A  =  (/)  ->  ( # `  A )  =  (
# `  (/) ) )
87adantl 467 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  A  =  (/) )  -> 
( # `  A )  =  ( # `  (/) ) )
9 hash0 12493 . . . . . 6  |-  ( # `  (/) )  =  0
108, 9syl6eq 2473 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  A  =  (/) )  -> 
( # `  A )  =  0 )
1110oveq1d 6259 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  A  =  (/) )  -> 
( ( # `  A
)  .x.  X )  =  ( 0  .x. 
X ) )
12 mpteq1 4442 . . . . . . . 8  |-  ( A  =  (/)  ->  ( k  e.  A  |->  X )  =  ( k  e.  (/)  |->  X ) )
1312adantl 467 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  A  =  (/) )  -> 
( k  e.  A  |->  X )  =  ( k  e.  (/)  |->  X ) )
14 mpt0 5661 . . . . . . 7  |-  ( k  e.  (/)  |->  X )  =  (/)
1513, 14syl6eq 2473 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  A  =  (/) )  -> 
( k  e.  A  |->  X )  =  (/) )
1615oveq2d 6260 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  A  =  (/) )  -> 
( G  gsumg  ( k  e.  A  |->  X ) )  =  ( G  gsumg  (/) ) )
173gsum0 16459 . . . . 5  |-  ( G 
gsumg  (/) )  =  ( 0g
`  G )
1816, 17syl6eq 2473 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  A  =  (/) )  -> 
( G  gsumg  ( k  e.  A  |->  X ) )  =  ( 0g `  G
) )
196, 11, 183eqtr4rd 2468 . . 3  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  A  =  (/) )  -> 
( G  gsumg  ( k  e.  A  |->  X ) )  =  ( ( # `  A
)  .x.  X )
)
2019ex 435 . 2  |-  ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  ->  ( A  =  (/)  ->  ( G  gsumg  ( k  e.  A  |->  X ) )  =  ( ( # `  A
)  .x.  X )
) )
21 simprl 762 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
( # `  A )  e.  NN )
22 nnuz 11140 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
2321, 22syl6eleq 2511 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
( # `  A )  e.  ( ZZ>= `  1
) )
24 simpr 462 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  A  e.  Fin  /\  X  e.  B
)  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `
 A ) ) )  ->  x  e.  ( 1 ... ( # `
 A ) ) )
25 simpl3 1010 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  ->  X  e.  B )
2625adantr 466 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  A  e.  Fin  /\  X  e.  B
)  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `
 A ) ) )  ->  X  e.  B )
27 eqid 2423 . . . . . . . . . 10  |-  ( x  e.  ( 1 ... ( # `  A
) )  |->  X )  =  ( x  e.  ( 1 ... ( # `
 A ) ) 
|->  X )
2827fvmpt2 5912 . . . . . . . . 9  |-  ( ( x  e.  ( 1 ... ( # `  A
) )  /\  X  e.  B )  ->  (
( x  e.  ( 1 ... ( # `  A ) )  |->  X ) `  x )  =  X )
2924, 26, 28syl2anc 665 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  A  e.  Fin  /\  X  e.  B
)  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `
 A ) ) )  ->  ( (
x  e.  ( 1 ... ( # `  A
) )  |->  X ) `
 x )  =  X )
30 f1of 5769 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  f :
( 1 ... ( # `
 A ) ) --> A )
3130ad2antll 733 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
f : ( 1 ... ( # `  A
) ) --> A )
3231ffvelrnda 5976 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Mnd  /\  A  e.  Fin  /\  X  e.  B
)  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `
 A ) ) )  ->  ( f `  x )  e.  A
)
3331feqmptd 5873 . . . . . . . . . . 11  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
f  =  ( x  e.  ( 1 ... ( # `  A
) )  |->  ( f `
 x ) ) )
34 eqidd 2424 . . . . . . . . . . 11  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
( k  e.  A  |->  X )  =  ( k  e.  A  |->  X ) )
35 eqidd 2424 . . . . . . . . . . 11  |-  ( k  =  ( f `  x )  ->  X  =  X )
3632, 33, 34, 35fmptco 6010 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
( ( k  e.  A  |->  X )  o.  f )  =  ( x  e.  ( 1 ... ( # `  A
) )  |->  X ) )
3736fveq1d 5822 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
( ( ( k  e.  A  |->  X )  o.  f ) `  x )  =  ( ( x  e.  ( 1 ... ( # `  A ) )  |->  X ) `  x ) )
3837adantr 466 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  A  e.  Fin  /\  X  e.  B
)  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `
 A ) ) )  ->  ( (
( k  e.  A  |->  X )  o.  f
) `  x )  =  ( ( x  e.  ( 1 ... ( # `  A
) )  |->  X ) `
 x ) )
39 elfznn 11774 . . . . . . . . 9  |-  ( x  e.  ( 1 ... ( # `  A
) )  ->  x  e.  NN )
40 fvconst2g 6072 . . . . . . . . 9  |-  ( ( X  e.  B  /\  x  e.  NN )  ->  ( ( NN  X.  { X } ) `  x )  =  X )
4125, 39, 40syl2an 479 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  A  e.  Fin  /\  X  e.  B
)  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `
 A ) ) )  ->  ( ( NN  X.  { X }
) `  x )  =  X )
4229, 38, 413eqtr4d 2467 . . . . . . 7  |-  ( ( ( ( G  e. 
Mnd  /\  A  e.  Fin  /\  X  e.  B
)  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `
 A ) ) )  ->  ( (
( k  e.  A  |->  X )  o.  f
) `  x )  =  ( ( NN 
X.  { X }
) `  x )
)
4323, 42seqfveq 12182 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
(  seq 1 ( ( +g  `  G ) ,  ( ( k  e.  A  |->  X )  o.  f ) ) `
 ( # `  A
) )  =  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 ( # `  A
) ) )
44 eqid 2423 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
45 eqid 2423 . . . . . . 7  |-  (Cntz `  G )  =  (Cntz `  G )
46 simpl1 1008 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  ->  G  e.  Mnd )
47 simpl2 1009 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  ->  A  e.  Fin )
4825adantr 466 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  A  e.  Fin  /\  X  e.  B
)  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  /\  k  e.  A )  ->  X  e.  B )
49 eqid 2423 . . . . . . . 8  |-  ( k  e.  A  |->  X )  =  ( k  e.  A  |->  X )
5048, 49fmptd 6000 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
( k  e.  A  |->  X ) : A --> B )
51 eqidd 2424 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
( X ( +g  `  G ) X )  =  ( X ( +g  `  G ) X ) )
522, 44, 45elcntzsn 16917 . . . . . . . . . . 11  |-  ( X  e.  B  ->  ( X  e.  ( (Cntz `  G ) `  { X } )  <->  ( X  e.  B  /\  ( X ( +g  `  G
) X )  =  ( X ( +g  `  G ) X ) ) ) )
5325, 52syl 17 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
( X  e.  ( (Cntz `  G ) `  { X } )  <-> 
( X  e.  B  /\  ( X ( +g  `  G ) X )  =  ( X ( +g  `  G ) X ) ) ) )
5425, 51, 53mpbir2and 930 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  ->  X  e.  ( (Cntz `  G ) `  { X } ) )
5554snssd 4083 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  ->  { X }  C_  (
(Cntz `  G ) `  { X } ) )
56 snidg 3962 . . . . . . . . . . . 12  |-  ( X  e.  B  ->  X  e.  { X } )
5725, 56syl 17 . . . . . . . . . . 11  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  ->  X  e.  { X } )
5857adantr 466 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Mnd  /\  A  e.  Fin  /\  X  e.  B
)  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  /\  k  e.  A )  ->  X  e.  { X } )
5958, 49fmptd 6000 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
( k  e.  A  |->  X ) : A --> { X } )
60 frn 5690 . . . . . . . . 9  |-  ( ( k  e.  A  |->  X ) : A --> { X }  ->  ran  ( k  e.  A  |->  X ) 
C_  { X }
)
6159, 60syl 17 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  ->  ran  ( k  e.  A  |->  X )  C_  { X } )
6245cntzidss 16929 . . . . . . . 8  |-  ( ( { X }  C_  ( (Cntz `  G ) `  { X } )  /\  ran  ( k  e.  A  |->  X ) 
C_  { X }
)  ->  ran  ( k  e.  A  |->  X ) 
C_  ( (Cntz `  G ) `  ran  ( k  e.  A  |->  X ) ) )
6355, 61, 62syl2anc 665 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  ->  ran  ( k  e.  A  |->  X )  C_  (
(Cntz `  G ) `  ran  ( k  e.  A  |->  X ) ) )
64 f1of1 5768 . . . . . . . 8  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  f :
( 1 ... ( # `
 A ) )
-1-1-> A )
6564ad2antll 733 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
f : ( 1 ... ( # `  A
) ) -1-1-> A )
66 suppssdm 6877 . . . . . . . . 9  |-  ( ( k  e.  A  |->  X ) supp  ( 0g `  G ) )  C_  dom  ( k  e.  A  |->  X )
6749dmmptss 5288 . . . . . . . . . 10  |-  dom  (
k  e.  A  |->  X )  C_  A
6867a1i 11 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  ->  dom  ( k  e.  A  |->  X )  C_  A
)
6966, 68syl5ss 3413 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
( ( k  e.  A  |->  X ) supp  ( 0g `  G ) ) 
C_  A )
70 f1ofo 5776 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  f :
( 1 ... ( # `
 A ) )
-onto-> A )
71 forn 5751 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  A
) ) -onto-> A  ->  ran  f  =  A
)
7270, 71syl 17 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  ran  f  =  A )
7372ad2antll 733 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  ->  ran  f  =  A
)
7469, 73sseqtr4d 3439 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
( ( k  e.  A  |->  X ) supp  ( 0g `  G ) ) 
C_  ran  f )
75 eqid 2423 . . . . . . 7  |-  ( ( ( k  e.  A  |->  X )  o.  f
) supp  ( 0g `  G ) )  =  ( ( ( k  e.  A  |->  X )  o.  f ) supp  ( 0g `  G ) )
762, 3, 44, 45, 46, 47, 50, 63, 21, 65, 74, 75gsumval3 17479 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
( G  gsumg  ( k  e.  A  |->  X ) )  =  (  seq 1 ( ( +g  `  G
) ,  ( ( k  e.  A  |->  X )  o.  f ) ) `  ( # `  A ) ) )
77 eqid 2423 . . . . . . . 8  |-  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )
782, 44, 4, 77mulgnn 16702 . . . . . . 7  |-  ( ( ( # `  A
)  e.  NN  /\  X  e.  B )  ->  ( ( # `  A
)  .x.  X )  =  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  ( # `
 A ) ) )
7921, 25, 78syl2anc 665 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
( ( # `  A
)  .x.  X )  =  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  ( # `
 A ) ) )
8043, 76, 793eqtr4d 2467 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( ( # `  A
)  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  -> 
( G  gsumg  ( k  e.  A  |->  X ) )  =  ( ( # `  A
)  .x.  X )
)
8180expr 618 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( # `  A
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  ->  ( G  gsumg  ( k  e.  A  |->  X ) )  =  ( (
# `  A )  .x.  X ) ) )
8281exlimdv 1772 . . 3  |-  ( ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  /\  ( # `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  ( G  gsumg  ( k  e.  A  |->  X ) )  =  ( ( # `  A
)  .x.  X )
) )
8382expimpd 606 . 2  |-  ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  ->  (
( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A )  ->  ( G  gsumg  ( k  e.  A  |->  X ) )  =  ( (
# `  A )  .x.  X ) ) )
84 fz1f1o 13714 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
85843ad2ant2 1027 . 2  |-  ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
8620, 83, 85mpjaod 382 1  |-  ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  ->  ( G  gsumg  ( k  e.  A  |->  X ) )  =  ( ( # `  A
)  .x.  X )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437   E.wex 1657    e. wcel 1872    C_ wss 3374   (/)c0 3699   {csn 3936    |-> cmpt 4420    X. cxp 4789   dom cdm 4791   ran crn 4792    o. ccom 4795   -->wf 5535   -1-1->wf1 5536   -onto->wfo 5537   -1-1-onto->wf1o 5538   ` cfv 5539  (class class class)co 6244   supp csupp 6864   Fincfn 7519   0cc0 9485   1c1 9486   NNcn 10555   ZZ>=cuz 11105   ...cfz 11730    seqcseq 12158   #chash 12460   Basecbs 15059   +g cplusg 15128   0gc0g 15276    gsumg cgsu 15277   Mndcmnd 16473  .gcmg 16610  Cntzccntz 16907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2403  ax-rep 4474  ax-sep 4484  ax-nul 4493  ax-pow 4540  ax-pr 4598  ax-un 6536  ax-inf2 8094  ax-cnex 9541  ax-resscn 9542  ax-1cn 9543  ax-icn 9544  ax-addcl 9545  ax-addrcl 9546  ax-mulcl 9547  ax-mulrcl 9548  ax-mulcom 9549  ax-addass 9550  ax-mulass 9551  ax-distr 9552  ax-i2m1 9553  ax-1ne0 9554  ax-1rid 9555  ax-rnegex 9556  ax-rrecex 9557  ax-cnre 9558  ax-pre-lttri 9559  ax-pre-lttrn 9560  ax-pre-ltadd 9561  ax-pre-mulgt0 9562
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2275  df-mo 2276  df-clab 2410  df-cleq 2416  df-clel 2419  df-nfc 2553  df-ne 2596  df-nel 2597  df-ral 2714  df-rex 2715  df-reu 2716  df-rmo 2717  df-rab 2718  df-v 3019  df-sbc 3238  df-csb 3334  df-dif 3377  df-un 3379  df-in 3381  df-ss 3388  df-pss 3390  df-nul 3700  df-if 3850  df-pw 3921  df-sn 3937  df-pr 3939  df-tp 3941  df-op 3943  df-uni 4158  df-int 4194  df-iun 4239  df-br 4362  df-opab 4421  df-mpt 4422  df-tr 4457  df-eprel 4702  df-id 4706  df-po 4712  df-so 4713  df-fr 4750  df-se 4751  df-we 4752  df-xp 4797  df-rel 4798  df-cnv 4799  df-co 4800  df-dm 4801  df-rn 4802  df-res 4803  df-ima 4804  df-pred 5337  df-ord 5383  df-on 5384  df-lim 5385  df-suc 5386  df-iota 5503  df-fun 5541  df-fn 5542  df-f 5543  df-f1 5544  df-fo 5545  df-f1o 5546  df-fv 5547  df-isom 5548  df-riota 6206  df-ov 6247  df-oprab 6248  df-mpt2 6249  df-om 6646  df-1st 6746  df-2nd 6747  df-supp 6865  df-wrecs 6978  df-recs 7040  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-en 7520  df-dom 7521  df-sdom 7522  df-fin 7523  df-oi 7973  df-card 8320  df-pnf 9623  df-mnf 9624  df-xr 9625  df-ltxr 9626  df-le 9627  df-sub 9808  df-neg 9809  df-nn 10556  df-n0 10816  df-z 10884  df-uz 11106  df-fz 11731  df-fzo 11862  df-seq 12159  df-hash 12461  df-0g 15278  df-gsum 15279  df-mgm 16426  df-sgrp 16465  df-mnd 16475  df-mulg 16614  df-cntz 16909
This theorem is referenced by:  gsumconstf  17506  mdetdiagid  19562  chpscmat  19803  chp0mat  19807  chpidmat  19808  tmdgsum2  21048  amgmlem  23852  lgseisenlem4  24217
  Copyright terms: Public domain W3C validator