MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumcom2 Structured version   Unicode version

Theorem gsumcom2 16588
Description: Two-dimensional commutation of a group sum. Note that while  A and  D are constants w.r.t.  j ,  k,  C ( j ) and 
E ( k ) are not. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
gsum2d2.b  |-  B  =  ( Base `  G
)
gsum2d2.z  |-  .0.  =  ( 0g `  G )
gsum2d2.g  |-  ( ph  ->  G  e. CMnd )
gsum2d2.a  |-  ( ph  ->  A  e.  V )
gsum2d2.r  |-  ( (
ph  /\  j  e.  A )  ->  C  e.  W )
gsum2d2.f  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  C ) )  ->  X  e.  B )
gsum2d2.u  |-  ( ph  ->  U  e.  Fin )
gsum2d2.n  |-  ( (
ph  /\  ( (
j  e.  A  /\  k  e.  C )  /\  -.  j U k ) )  ->  X  =  .0.  )
gsumcom2.d  |-  ( ph  ->  D  e.  Y )
gsumcom2.c  |-  ( ph  ->  ( ( j  e.  A  /\  k  e.  C )  <->  ( k  e.  D  /\  j  e.  E ) ) )
Assertion
Ref Expression
gsumcom2  |-  ( ph  ->  ( G  gsumg  ( j  e.  A ,  k  e.  C  |->  X ) )  =  ( G  gsumg  ( k  e.  D ,  j  e.  E  |->  X ) ) )
Distinct variable groups:    j, k, B    D, j, k    j, E    ph, j, k    A, j, k    j, G, k    U, j, k    C, k   
j, V    .0. , j,
k
Allowed substitution hints:    C( j)    E( k)    V( k)    W( j, k)    X( j, k)    Y( j, k)

Proof of Theorem gsumcom2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsum2d2.b . . 3  |-  B  =  ( Base `  G
)
2 gsum2d2.z . . 3  |-  .0.  =  ( 0g `  G )
3 gsum2d2.g . . 3  |-  ( ph  ->  G  e. CMnd )
4 gsum2d2.a . . . 4  |-  ( ph  ->  A  e.  V )
5 snex 4640 . . . . . 6  |-  { j }  e.  _V
6 gsum2d2.r . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  C  e.  W )
7 xpexg 6616 . . . . . 6  |-  ( ( { j }  e.  _V  /\  C  e.  W
)  ->  ( {
j }  X.  C
)  e.  _V )
85, 6, 7sylancr 663 . . . . 5  |-  ( (
ph  /\  j  e.  A )  ->  ( { j }  X.  C )  e.  _V )
98ralrimiva 2829 . . . 4  |-  ( ph  ->  A. j  e.  A  ( { j }  X.  C )  e.  _V )
10 iunexg 6662 . . . 4  |-  ( ( A  e.  V  /\  A. j  e.  A  ( { j }  X.  C )  e.  _V )  ->  U_ j  e.  A  ( { j }  X.  C )  e.  _V )
114, 9, 10syl2anc 661 . . 3  |-  ( ph  ->  U_ j  e.  A  ( { j }  X.  C )  e.  _V )
12 gsum2d2.f . . . . 5  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  C ) )  ->  X  e.  B )
1312ralrimivva 2912 . . . 4  |-  ( ph  ->  A. j  e.  A  A. k  e.  C  X  e.  B )
14 eqid 2454 . . . . 5  |-  ( j  e.  A ,  k  e.  C  |->  X )  =  ( j  e.  A ,  k  e.  C  |->  X )
1514fmpt2x 6749 . . . 4  |-  ( A. j  e.  A  A. k  e.  C  X  e.  B  <->  ( j  e.  A ,  k  e.  C  |->  X ) :
U_ j  e.  A  ( { j }  X.  C ) --> B )
1613, 15sylib 196 . . 3  |-  ( ph  ->  ( j  e.  A ,  k  e.  C  |->  X ) : U_ j  e.  A  ( { j }  X.  C ) --> B )
17 gsum2d2.u . . . 4  |-  ( ph  ->  U  e.  Fin )
18 gsum2d2.n . . . 4  |-  ( (
ph  /\  ( (
j  e.  A  /\  k  e.  C )  /\  -.  j U k ) )  ->  X  =  .0.  )
191, 2, 3, 4, 6, 12, 17, 18gsum2d2lem 16586 . . 3  |-  ( ph  ->  ( j  e.  A ,  k  e.  C  |->  X ) finSupp  .0.  )
20 relxp 5054 . . . . . . 7  |-  Rel  ( { k }  X.  E )
2120rgenw 2899 . . . . . 6  |-  A. k  e.  D  Rel  ( { k }  X.  E
)
22 reliun 5067 . . . . . 6  |-  ( Rel  U_ k  e.  D  ( { k }  X.  E )  <->  A. k  e.  D  Rel  ( { k }  X.  E
) )
2321, 22mpbir 209 . . . . 5  |-  Rel  U_ k  e.  D  ( {
k }  X.  E
)
24 cnvf1o 6780 . . . . 5  |-  ( Rel  U_ k  e.  D  ( { k }  X.  E )  ->  (
z  e.  U_ k  e.  D  ( {
k }  X.  E
)  |->  U. `' { z } ) : U_ k  e.  D  ( { k }  X.  E ) -1-1-onto-> `' U_ k  e.  D  ( { k }  X.  E ) )
2523, 24ax-mp 5 . . . 4  |-  ( z  e.  U_ k  e.  D  ( { k }  X.  E ) 
|->  U. `' { z } ) : U_ k  e.  D  ( { k }  X.  E ) -1-1-onto-> `' U_ k  e.  D  ( { k }  X.  E )
26 relxp 5054 . . . . . . . 8  |-  Rel  ( { j }  X.  C )
2726rgenw 2899 . . . . . . 7  |-  A. j  e.  A  Rel  ( { j }  X.  C
)
28 reliun 5067 . . . . . . 7  |-  ( Rel  U_ j  e.  A  ( { j }  X.  C )  <->  A. j  e.  A  Rel  ( { j }  X.  C
) )
2927, 28mpbir 209 . . . . . 6  |-  Rel  U_ j  e.  A  ( {
j }  X.  C
)
30 relcnv 5313 . . . . . 6  |-  Rel  `' U_ k  e.  D  ( { k }  X.  E )
31 nfv 1674 . . . . . . . 8  |-  F/ k
ph
32 nfv 1674 . . . . . . . . 9  |-  F/ k
<. x ,  y >.  e.  U_ j  e.  A  ( { j }  X.  C )
33 nfiu1 4307 . . . . . . . . . . 11  |-  F/_ k U_ k  e.  D  ( { k }  X.  E )
3433nfcnv 5125 . . . . . . . . . 10  |-  F/_ k `' U_ k  e.  D  ( { k }  X.  E )
3534nfel2 2633 . . . . . . . . 9  |-  F/ k
<. x ,  y >.  e.  `' U_ k  e.  D  ( { k }  X.  E )
3632, 35nfbi 1872 . . . . . . . 8  |-  F/ k ( <. x ,  y
>.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  <. x ,  y >.  e.  `' U_ k  e.  D  ( { k }  X.  E ) )
3731, 36nfim 1858 . . . . . . 7  |-  F/ k ( ph  ->  ( <. x ,  y >.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  <. x ,  y >.  e.  `' U_ k  e.  D  ( { k }  X.  E ) ) )
38 opeq2 4167 . . . . . . . . . 10  |-  ( k  =  y  ->  <. x ,  k >.  =  <. x ,  y >. )
3938eleq1d 2523 . . . . . . . . 9  |-  ( k  =  y  ->  ( <. x ,  k >.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  <. x ,  y >.  e.  U_ j  e.  A  ( {
j }  X.  C
) ) )
4038eleq1d 2523 . . . . . . . . 9  |-  ( k  =  y  ->  ( <. x ,  k >.  e.  `' U_ k  e.  D  ( { k }  X.  E )  <->  <. x ,  y >.  e.  `' U_ k  e.  D  ( { k }  X.  E ) ) )
4139, 40bibi12d 321 . . . . . . . 8  |-  ( k  =  y  ->  (
( <. x ,  k
>.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  <. x ,  k >.  e.  `' U_ k  e.  D  ( { k }  X.  E ) )  <->  ( <. x ,  y >.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  <. x ,  y >.  e.  `' U_ k  e.  D  ( { k }  X.  E ) ) ) )
4241imbi2d 316 . . . . . . 7  |-  ( k  =  y  ->  (
( ph  ->  ( <.
x ,  k >.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  <. x ,  k >.  e.  `' U_ k  e.  D  ( { k }  X.  E ) ) )  <-> 
( ph  ->  ( <.
x ,  y >.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  <. x ,  y >.  e.  `' U_ k  e.  D  ( { k }  X.  E ) ) ) ) )
43 nfv 1674 . . . . . . . . 9  |-  F/ j
ph
44 nfiu1 4307 . . . . . . . . . . 11  |-  F/_ j U_ j  e.  A  ( { j }  X.  C )
4544nfel2 2633 . . . . . . . . . 10  |-  F/ j
<. x ,  k >.  e.  U_ j  e.  A  ( { j }  X.  C )
46 nfv 1674 . . . . . . . . . 10  |-  F/ j
<. x ,  k >.  e.  `' U_ k  e.  D  ( { k }  X.  E )
4745, 46nfbi 1872 . . . . . . . . 9  |-  F/ j ( <. x ,  k
>.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  <. x ,  k >.  e.  `' U_ k  e.  D  ( { k }  X.  E ) )
4843, 47nfim 1858 . . . . . . . 8  |-  F/ j ( ph  ->  ( <. x ,  k >.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  <. x ,  k >.  e.  `' U_ k  e.  D  ( { k }  X.  E ) ) )
49 opeq1 4166 . . . . . . . . . . 11  |-  ( j  =  x  ->  <. j ,  k >.  =  <. x ,  k >. )
5049eleq1d 2523 . . . . . . . . . 10  |-  ( j  =  x  ->  ( <. j ,  k >.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  <. x ,  k >.  e.  U_ j  e.  A  ( {
j }  X.  C
) ) )
5149eleq1d 2523 . . . . . . . . . 10  |-  ( j  =  x  ->  ( <. j ,  k >.  e.  `' U_ k  e.  D  ( { k }  X.  E )  <->  <. x ,  k >.  e.  `' U_ k  e.  D  ( { k }  X.  E ) ) )
5250, 51bibi12d 321 . . . . . . . . 9  |-  ( j  =  x  ->  (
( <. j ,  k
>.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  <. j ,  k >.  e.  `' U_ k  e.  D  ( { k }  X.  E ) )  <->  ( <. x ,  k >.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  <. x ,  k >.  e.  `' U_ k  e.  D  ( { k }  X.  E ) ) ) )
5352imbi2d 316 . . . . . . . 8  |-  ( j  =  x  ->  (
( ph  ->  ( <.
j ,  k >.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  <. j ,  k >.  e.  `' U_ k  e.  D  ( { k }  X.  E ) ) )  <-> 
( ph  ->  ( <.
x ,  k >.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  <. x ,  k >.  e.  `' U_ k  e.  D  ( { k }  X.  E ) ) ) ) )
54 gsumcom2.c . . . . . . . . . 10  |-  ( ph  ->  ( ( j  e.  A  /\  k  e.  C )  <->  ( k  e.  D  /\  j  e.  E ) ) )
55 opeliunxp 4997 . . . . . . . . . 10  |-  ( <.
j ,  k >.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  ( j  e.  A  /\  k  e.  C ) )
56 opeliunxp 4997 . . . . . . . . . 10  |-  ( <.
k ,  j >.  e.  U_ k  e.  D  ( { k }  X.  E )  <->  ( k  e.  D  /\  j  e.  E ) )
5754, 55, 563bitr4g 288 . . . . . . . . 9  |-  ( ph  ->  ( <. j ,  k
>.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  <. k ,  j >.  e.  U_ k  e.  D  ( { k }  X.  E ) ) )
58 vex 3079 . . . . . . . . . 10  |-  j  e. 
_V
59 vex 3079 . . . . . . . . . 10  |-  k  e. 
_V
6058, 59opelcnv 5128 . . . . . . . . 9  |-  ( <.
j ,  k >.  e.  `' U_ k  e.  D  ( { k }  X.  E )  <->  <. k ,  j >.  e.  U_ k  e.  D  ( {
k }  X.  E
) )
6157, 60syl6bbr 263 . . . . . . . 8  |-  ( ph  ->  ( <. j ,  k
>.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  <. j ,  k >.  e.  `' U_ k  e.  D  ( { k }  X.  E ) ) )
6248, 53, 61chvar 1969 . . . . . . 7  |-  ( ph  ->  ( <. x ,  k
>.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  <. x ,  k >.  e.  `' U_ k  e.  D  ( { k }  X.  E ) ) )
6337, 42, 62chvar 1969 . . . . . 6  |-  ( ph  ->  ( <. x ,  y
>.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  <. x ,  y >.  e.  `' U_ k  e.  D  ( { k }  X.  E ) ) )
6429, 30, 63eqrelrdv 5043 . . . . 5  |-  ( ph  ->  U_ j  e.  A  ( { j }  X.  C )  =  `' U_ k  e.  D  ( { k }  X.  E ) )
65 f1oeq3 5741 . . . . 5  |-  ( U_ j  e.  A  ( { j }  X.  C )  =  `' U_ k  e.  D  ( { k }  X.  E )  ->  (
( z  e.  U_ k  e.  D  ( { k }  X.  E )  |->  U. `' { z } ) : U_ k  e.  D  ( { k }  X.  E ) -1-1-onto-> U_ j  e.  A  ( { j }  X.  C )  <->  ( z  e.  U_ k  e.  D  ( { k }  X.  E )  |->  U. `' { z } ) : U_ k  e.  D  ( { k }  X.  E ) -1-1-onto-> `'
U_ k  e.  D  ( { k }  X.  E ) ) )
6664, 65syl 16 . . . 4  |-  ( ph  ->  ( ( z  e. 
U_ k  e.  D  ( { k }  X.  E )  |->  U. `' { z } ) : U_ k  e.  D  ( { k }  X.  E ) -1-1-onto-> U_ j  e.  A  ( { j }  X.  C )  <->  ( z  e.  U_ k  e.  D  ( { k }  X.  E )  |->  U. `' { z } ) : U_ k  e.  D  ( { k }  X.  E ) -1-1-onto-> `'
U_ k  e.  D  ( { k }  X.  E ) ) )
6725, 66mpbiri 233 . . 3  |-  ( ph  ->  ( z  e.  U_ k  e.  D  ( { k }  X.  E )  |->  U. `' { z } ) : U_ k  e.  D  ( { k }  X.  E ) -1-1-onto-> U_ j  e.  A  ( { j }  X.  C ) )
681, 2, 3, 11, 16, 19, 67gsumf1o 16518 . 2  |-  ( ph  ->  ( G  gsumg  ( j  e.  A ,  k  e.  C  |->  X ) )  =  ( G  gsumg  ( ( j  e.  A ,  k  e.  C  |->  X )  o.  ( z  e.  U_ k  e.  D  ( { k }  X.  E )  |->  U. `' { z } ) ) ) )
69 sneq 3994 . . . . . . . . . . 11  |-  ( z  =  <. x ,  y
>.  ->  { z }  =  { <. x ,  y >. } )
7069cnveqd 5122 . . . . . . . . . 10  |-  ( z  =  <. x ,  y
>.  ->  `' { z }  =  `' { <. x ,  y >. } )
7170unieqd 4208 . . . . . . . . 9  |-  ( z  =  <. x ,  y
>.  ->  U. `' { z }  =  U. `' { <. x ,  y
>. } )
72 opswap 5433 . . . . . . . . 9  |-  U. `' { <. x ,  y
>. }  =  <. y ,  x >.
7371, 72syl6eq 2511 . . . . . . . 8  |-  ( z  =  <. x ,  y
>.  ->  U. `' { z }  =  <. y ,  x >. )
7473fveq2d 5802 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  ( ( j  e.  A ,  k  e.  C  |->  X ) `
 U. `' {
z } )  =  ( ( j  e.  A ,  k  e.  C  |->  X ) `  <. y ,  x >. ) )
75 df-ov 6202 . . . . . . 7  |-  ( y ( j  e.  A ,  k  e.  C  |->  X ) x )  =  ( ( j  e.  A ,  k  e.  C  |->  X ) `
 <. y ,  x >. )
7674, 75syl6eqr 2513 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( ( j  e.  A ,  k  e.  C  |->  X ) `
 U. `' {
z } )  =  ( y ( j  e.  A ,  k  e.  C  |->  X ) x ) )
7776mpt2mptx 6290 . . . . 5  |-  ( z  e.  U_ x  e.  D  ( { x }  X.  [_ x  / 
k ]_ E )  |->  ( ( j  e.  A ,  k  e.  C  |->  X ) `  U. `' { z } ) )  =  ( x  e.  D ,  y  e.  [_ x  / 
k ]_ E  |->  ( y ( j  e.  A ,  k  e.  C  |->  X ) x ) )
78 nfcv 2616 . . . . . . 7  |-  F/_ x
( { k }  X.  E )
79 nfcv 2616 . . . . . . . 8  |-  F/_ k { x }
80 nfcsb1v 3410 . . . . . . . 8  |-  F/_ k [_ x  /  k ]_ E
8179, 80nfxp 4973 . . . . . . 7  |-  F/_ k
( { x }  X.  [_ x  /  k ]_ E )
82 sneq 3994 . . . . . . . 8  |-  ( k  =  x  ->  { k }  =  { x } )
83 csbeq1a 3403 . . . . . . . 8  |-  ( k  =  x  ->  E  =  [_ x  /  k ]_ E )
8482, 83xpeq12d 4972 . . . . . . 7  |-  ( k  =  x  ->  ( { k }  X.  E )  =  ( { x }  X.  [_ x  /  k ]_ E ) )
8578, 81, 84cbviun 4314 . . . . . 6  |-  U_ k  e.  D  ( {
k }  X.  E
)  =  U_ x  e.  D  ( {
x }  X.  [_ x  /  k ]_ E
)
86 mpteq1 4479 . . . . . 6  |-  ( U_ k  e.  D  ( { k }  X.  E )  =  U_ x  e.  D  ( { x }  X.  [_ x  /  k ]_ E )  ->  (
z  e.  U_ k  e.  D  ( {
k }  X.  E
)  |->  ( ( j  e.  A ,  k  e.  C  |->  X ) `
 U. `' {
z } ) )  =  ( z  e. 
U_ x  e.  D  ( { x }  X.  [_ x  /  k ]_ E )  |->  ( ( j  e.  A , 
k  e.  C  |->  X ) `  U. `' { z } ) ) )
8785, 86ax-mp 5 . . . . 5  |-  ( z  e.  U_ k  e.  D  ( { k }  X.  E ) 
|->  ( ( j  e.  A ,  k  e.  C  |->  X ) `  U. `' { z } ) )  =  ( z  e.  U_ x  e.  D  ( { x }  X.  [_ x  / 
k ]_ E )  |->  ( ( j  e.  A ,  k  e.  C  |->  X ) `  U. `' { z } ) )
88 nfcv 2616 . . . . . 6  |-  F/_ x E
89 nfcv 2616 . . . . . 6  |-  F/_ x
( j ( j  e.  A ,  k  e.  C  |->  X ) k )
90 nfcv 2616 . . . . . 6  |-  F/_ y
( j ( j  e.  A ,  k  e.  C  |->  X ) k )
91 nfcv 2616 . . . . . . 7  |-  F/_ k
y
92 nfmpt22 6262 . . . . . . 7  |-  F/_ k
( j  e.  A ,  k  e.  C  |->  X )
93 nfcv 2616 . . . . . . 7  |-  F/_ k
x
9491, 92, 93nfov 6222 . . . . . 6  |-  F/_ k
( y ( j  e.  A ,  k  e.  C  |->  X ) x )
95 nfcv 2616 . . . . . . 7  |-  F/_ j
y
96 nfmpt21 6261 . . . . . . 7  |-  F/_ j
( j  e.  A ,  k  e.  C  |->  X )
97 nfcv 2616 . . . . . . 7  |-  F/_ j
x
9895, 96, 97nfov 6222 . . . . . 6  |-  F/_ j
( y ( j  e.  A ,  k  e.  C  |->  X ) x )
99 oveq2 6207 . . . . . . 7  |-  ( k  =  x  ->  (
j ( j  e.  A ,  k  e.  C  |->  X ) k )  =  ( j ( j  e.  A ,  k  e.  C  |->  X ) x ) )
100 oveq1 6206 . . . . . . 7  |-  ( j  =  y  ->  (
j ( j  e.  A ,  k  e.  C  |->  X ) x )  =  ( y ( j  e.  A ,  k  e.  C  |->  X ) x ) )
10199, 100sylan9eq 2515 . . . . . 6  |-  ( ( k  =  x  /\  j  =  y )  ->  ( j ( j  e.  A ,  k  e.  C  |->  X ) k )  =  ( y ( j  e.  A ,  k  e.  C  |->  X ) x ) )
10288, 80, 89, 90, 94, 98, 83, 101cbvmpt2x 6272 . . . . 5  |-  ( k  e.  D ,  j  e.  E  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) k ) )  =  ( x  e.  D ,  y  e.  [_ x  / 
k ]_ E  |->  ( y ( j  e.  A ,  k  e.  C  |->  X ) x ) )
10377, 87, 1023eqtr4i 2493 . . . 4  |-  ( z  e.  U_ k  e.  D  ( { k }  X.  E ) 
|->  ( ( j  e.  A ,  k  e.  C  |->  X ) `  U. `' { z } ) )  =  ( k  e.  D ,  j  e.  E  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) k ) )
104 f1of 5748 . . . . . . 7  |-  ( ( z  e.  U_ k  e.  D  ( {
k }  X.  E
)  |->  U. `' { z } ) : U_ k  e.  D  ( { k }  X.  E ) -1-1-onto-> U_ j  e.  A  ( { j }  X.  C )  ->  (
z  e.  U_ k  e.  D  ( {
k }  X.  E
)  |->  U. `' { z } ) : U_ k  e.  D  ( { k }  X.  E ) --> U_ j  e.  A  ( {
j }  X.  C
) )
10567, 104syl 16 . . . . . 6  |-  ( ph  ->  ( z  e.  U_ k  e.  D  ( { k }  X.  E )  |->  U. `' { z } ) : U_ k  e.  D  ( { k }  X.  E ) -->
U_ j  e.  A  ( { j }  X.  C ) )
106 eqid 2454 . . . . . . 7  |-  ( z  e.  U_ k  e.  D  ( { k }  X.  E ) 
|->  U. `' { z } )  =  ( z  e.  U_ k  e.  D  ( {
k }  X.  E
)  |->  U. `' { z } )
107106fmpt 5972 . . . . . 6  |-  ( A. z  e.  U_  k  e.  D  ( { k }  X.  E ) U. `' { z }  e.  U_ j  e.  A  ( {
j }  X.  C
)  <->  ( z  e. 
U_ k  e.  D  ( { k }  X.  E )  |->  U. `' { z } ) : U_ k  e.  D  ( { k }  X.  E ) -->
U_ j  e.  A  ( { j }  X.  C ) )
108105, 107sylibr 212 . . . . 5  |-  ( ph  ->  A. z  e.  U_  k  e.  D  ( { k }  X.  E ) U. `' { z }  e.  U_ j  e.  A  ( { j }  X.  C ) )
109 eqidd 2455 . . . . 5  |-  ( ph  ->  ( z  e.  U_ k  e.  D  ( { k }  X.  E )  |->  U. `' { z } )  =  ( z  e. 
U_ k  e.  D  ( { k }  X.  E )  |->  U. `' { z } ) )
11016feqmptd 5852 . . . . 5  |-  ( ph  ->  ( j  e.  A ,  k  e.  C  |->  X )  =  ( x  e.  U_ j  e.  A  ( {
j }  X.  C
)  |->  ( ( j  e.  A ,  k  e.  C  |->  X ) `
 x ) ) )
111 fveq2 5798 . . . . 5  |-  ( x  =  U. `' {
z }  ->  (
( j  e.  A ,  k  e.  C  |->  X ) `  x
)  =  ( ( j  e.  A , 
k  e.  C  |->  X ) `  U. `' { z } ) )
112108, 109, 110, 111fmptcof 5985 . . . 4  |-  ( ph  ->  ( ( j  e.  A ,  k  e.  C  |->  X )  o.  ( z  e.  U_ k  e.  D  ( { k }  X.  E )  |->  U. `' { z } ) )  =  ( z  e.  U_ k  e.  D  ( { k }  X.  E ) 
|->  ( ( j  e.  A ,  k  e.  C  |->  X ) `  U. `' { z } ) ) )
11312ex 434 . . . . . . . . 9  |-  ( ph  ->  ( ( j  e.  A  /\  k  e.  C )  ->  X  e.  B ) )
11414ovmpt4g 6322 . . . . . . . . . 10  |-  ( ( j  e.  A  /\  k  e.  C  /\  X  e.  B )  ->  ( j ( j  e.  A ,  k  e.  C  |->  X ) k )  =  X )
1151143expia 1190 . . . . . . . . 9  |-  ( ( j  e.  A  /\  k  e.  C )  ->  ( X  e.  B  ->  ( j ( j  e.  A ,  k  e.  C  |->  X ) k )  =  X ) )
116113, 115sylcom 29 . . . . . . . 8  |-  ( ph  ->  ( ( j  e.  A  /\  k  e.  C )  ->  (
j ( j  e.  A ,  k  e.  C  |->  X ) k )  =  X ) )
11754, 116sylbird 235 . . . . . . 7  |-  ( ph  ->  ( ( k  e.  D  /\  j  e.  E )  ->  (
j ( j  e.  A ,  k  e.  C  |->  X ) k )  =  X ) )
1181173impib 1186 . . . . . 6  |-  ( (
ph  /\  k  e.  D  /\  j  e.  E
)  ->  ( j
( j  e.  A ,  k  e.  C  |->  X ) k )  =  X )
119118eqcomd 2462 . . . . 5  |-  ( (
ph  /\  k  e.  D  /\  j  e.  E
)  ->  X  =  ( j ( j  e.  A ,  k  e.  C  |->  X ) k ) )
120119mpt2eq3dva 6258 . . . 4  |-  ( ph  ->  ( k  e.  D ,  j  e.  E  |->  X )  =  ( k  e.  D , 
j  e.  E  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) k ) ) )
121103, 112, 1203eqtr4a 2521 . . 3  |-  ( ph  ->  ( ( j  e.  A ,  k  e.  C  |->  X )  o.  ( z  e.  U_ k  e.  D  ( { k }  X.  E )  |->  U. `' { z } ) )  =  ( k  e.  D ,  j  e.  E  |->  X ) )
122121oveq2d 6215 . 2  |-  ( ph  ->  ( G  gsumg  ( ( j  e.  A ,  k  e.  C  |->  X )  o.  ( z  e.  U_ k  e.  D  ( { k }  X.  E )  |->  U. `' { z } ) ) )  =  ( G  gsumg  ( k  e.  D ,  j  e.  E  |->  X ) ) )
12368, 122eqtrd 2495 1  |-  ( ph  ->  ( G  gsumg  ( j  e.  A ,  k  e.  C  |->  X ) )  =  ( G  gsumg  ( k  e.  D ,  j  e.  E  |->  X ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2798   _Vcvv 3076   [_csb 3394   {csn 3984   <.cop 3990   U.cuni 4198   U_ciun 4278   class class class wbr 4399    |-> cmpt 4457    X. cxp 4945   `'ccnv 4946    o. ccom 4951   Rel wrel 4952   -->wf 5521   -1-1-onto->wf1o 5524   ` cfv 5525  (class class class)co 6199    |-> cmpt2 6201   Fincfn 7419   Basecbs 14291   0gc0g 14496    gsumg cgsu 14497  CMndccmn 16397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-se 4787  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-isom 5534  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-1st 6686  df-2nd 6687  df-supp 6800  df-recs 6941  df-rdg 6975  df-1o 7029  df-oadd 7033  df-er 7210  df-en 7420  df-dom 7421  df-sdom 7422  df-fin 7423  df-fsupp 7731  df-oi 7834  df-card 8219  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-nn 10433  df-n0 10690  df-z 10757  df-uz 10972  df-fz 11554  df-fzo 11665  df-seq 11923  df-hash 12220  df-0g 14498  df-gsum 14499  df-mnd 15533  df-cntz 15953  df-cmn 16399
This theorem is referenced by:  gsumcom  16590  gsumbagdiag  17568
  Copyright terms: Public domain W3C validator