MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2d2 Structured version   Unicode version

Theorem gsum2d2 16805
Description: Write a group sum over a two-dimensional region as a double sum. (Note that  C ( j ) is a function of  j.) (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
gsum2d2.b  |-  B  =  ( Base `  G
)
gsum2d2.z  |-  .0.  =  ( 0g `  G )
gsum2d2.g  |-  ( ph  ->  G  e. CMnd )
gsum2d2.a  |-  ( ph  ->  A  e.  V )
gsum2d2.r  |-  ( (
ph  /\  j  e.  A )  ->  C  e.  W )
gsum2d2.f  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  C ) )  ->  X  e.  B )
gsum2d2.u  |-  ( ph  ->  U  e.  Fin )
gsum2d2.n  |-  ( (
ph  /\  ( (
j  e.  A  /\  k  e.  C )  /\  -.  j U k ) )  ->  X  =  .0.  )
Assertion
Ref Expression
gsum2d2  |-  ( ph  ->  ( G  gsumg  ( j  e.  A ,  k  e.  C  |->  X ) )  =  ( G  gsumg  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  X ) ) ) ) )
Distinct variable groups:    j, k, B    ph, j, k    A, j, k    j, G, k    U, j, k    C, k   
j, V    .0. , j,
k
Allowed substitution hints:    C( j)    V( k)    W( j, k)    X( j, k)

Proof of Theorem gsum2d2
Dummy variables  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsum2d2.b . . 3  |-  B  =  ( Base `  G
)
2 gsum2d2.z . . 3  |-  .0.  =  ( 0g `  G )
3 gsum2d2.g . . 3  |-  ( ph  ->  G  e. CMnd )
4 gsum2d2.a . . . 4  |-  ( ph  ->  A  e.  V )
5 snex 4688 . . . . . 6  |-  { j }  e.  _V
6 gsum2d2.r . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  C  e.  W )
7 xpexg 6586 . . . . . 6  |-  ( ( { j }  e.  _V  /\  C  e.  W
)  ->  ( {
j }  X.  C
)  e.  _V )
85, 6, 7sylancr 663 . . . . 5  |-  ( (
ph  /\  j  e.  A )  ->  ( { j }  X.  C )  e.  _V )
98ralrimiva 2878 . . . 4  |-  ( ph  ->  A. j  e.  A  ( { j }  X.  C )  e.  _V )
10 iunexg 6760 . . . 4  |-  ( ( A  e.  V  /\  A. j  e.  A  ( { j }  X.  C )  e.  _V )  ->  U_ j  e.  A  ( { j }  X.  C )  e.  _V )
114, 9, 10syl2anc 661 . . 3  |-  ( ph  ->  U_ j  e.  A  ( { j }  X.  C )  e.  _V )
12 relxp 5110 . . . . . 6  |-  Rel  ( { j }  X.  C )
1312rgenw 2825 . . . . 5  |-  A. j  e.  A  Rel  ( { j }  X.  C
)
14 reliun 5123 . . . . 5  |-  ( Rel  U_ j  e.  A  ( { j }  X.  C )  <->  A. j  e.  A  Rel  ( { j }  X.  C
) )
1513, 14mpbir 209 . . . 4  |-  Rel  U_ j  e.  A  ( {
j }  X.  C
)
1615a1i 11 . . 3  |-  ( ph  ->  Rel  U_ j  e.  A  ( { j }  X.  C ) )
17 vex 3116 . . . . . 6  |-  x  e. 
_V
1817eldm2 5201 . . . . 5  |-  ( x  e.  dom  U_ j  e.  A  ( {
j }  X.  C
)  <->  E. y <. x ,  y >.  e.  U_ j  e.  A  ( { j }  X.  C ) )
19 eliunxp 5140 . . . . . . 7  |-  ( <.
x ,  y >.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  E. j E. k ( <. x ,  y >.  =  <. j ,  k >.  /\  (
j  e.  A  /\  k  e.  C )
) )
20 vex 3116 . . . . . . . . . . . 12  |-  y  e. 
_V
2117, 20opth1 4720 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  =  <. j ,  k
>.  ->  x  =  j )
2221ad2antrl 727 . . . . . . . . . 10  |-  ( (
ph  /\  ( <. x ,  y >.  =  <. j ,  k >.  /\  (
j  e.  A  /\  k  e.  C )
) )  ->  x  =  j )
23 simprrl 763 . . . . . . . . . 10  |-  ( (
ph  /\  ( <. x ,  y >.  =  <. j ,  k >.  /\  (
j  e.  A  /\  k  e.  C )
) )  ->  j  e.  A )
2422, 23eqeltrd 2555 . . . . . . . . 9  |-  ( (
ph  /\  ( <. x ,  y >.  =  <. j ,  k >.  /\  (
j  e.  A  /\  k  e.  C )
) )  ->  x  e.  A )
2524ex 434 . . . . . . . 8  |-  ( ph  ->  ( ( <. x ,  y >.  =  <. j ,  k >.  /\  (
j  e.  A  /\  k  e.  C )
)  ->  x  e.  A ) )
2625exlimdvv 1701 . . . . . . 7  |-  ( ph  ->  ( E. j E. k ( <. x ,  y >.  =  <. j ,  k >.  /\  (
j  e.  A  /\  k  e.  C )
)  ->  x  e.  A ) )
2719, 26syl5bi 217 . . . . . 6  |-  ( ph  ->  ( <. x ,  y
>.  e.  U_ j  e.  A  ( { j }  X.  C )  ->  x  e.  A
) )
2827exlimdv 1700 . . . . 5  |-  ( ph  ->  ( E. y <.
x ,  y >.  e.  U_ j  e.  A  ( { j }  X.  C )  ->  x  e.  A ) )
2918, 28syl5bi 217 . . . 4  |-  ( ph  ->  ( x  e.  dom  U_ j  e.  A  ( { j }  X.  C )  ->  x  e.  A ) )
3029ssrdv 3510 . . 3  |-  ( ph  ->  dom  U_ j  e.  A  ( { j }  X.  C )  C_  A
)
31 gsum2d2.f . . . . 5  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  C ) )  ->  X  e.  B )
3231ralrimivva 2885 . . . 4  |-  ( ph  ->  A. j  e.  A  A. k  e.  C  X  e.  B )
33 eqid 2467 . . . . 5  |-  ( j  e.  A ,  k  e.  C  |->  X )  =  ( j  e.  A ,  k  e.  C  |->  X )
3433fmpt2x 6850 . . . 4  |-  ( A. j  e.  A  A. k  e.  C  X  e.  B  <->  ( j  e.  A ,  k  e.  C  |->  X ) :
U_ j  e.  A  ( { j }  X.  C ) --> B )
3532, 34sylib 196 . . 3  |-  ( ph  ->  ( j  e.  A ,  k  e.  C  |->  X ) : U_ j  e.  A  ( { j }  X.  C ) --> B )
36 gsum2d2.u . . . 4  |-  ( ph  ->  U  e.  Fin )
37 gsum2d2.n . . . 4  |-  ( (
ph  /\  ( (
j  e.  A  /\  k  e.  C )  /\  -.  j U k ) )  ->  X  =  .0.  )
381, 2, 3, 4, 6, 31, 36, 37gsum2d2lem 16804 . . 3  |-  ( ph  ->  ( j  e.  A ,  k  e.  C  |->  X ) finSupp  .0.  )
391, 2, 3, 11, 16, 4, 30, 35, 38gsum2d 16802 . 2  |-  ( ph  ->  ( G  gsumg  ( j  e.  A ,  k  e.  C  |->  X ) )  =  ( G  gsumg  ( m  e.  A  |->  ( G  gsumg  ( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
m } )  |->  ( m ( j  e.  A ,  k  e.  C  |->  X ) n ) ) ) ) ) )
40 nfcv 2629 . . . . . 6  |-  F/_ j G
41 nfcv 2629 . . . . . 6  |-  F/_ j  gsumg
42 nfiu1 4355 . . . . . . . 8  |-  F/_ j U_ j  e.  A  ( { j }  X.  C )
43 nfcv 2629 . . . . . . . 8  |-  F/_ j { m }
4442, 43nfima 5345 . . . . . . 7  |-  F/_ j
( U_ j  e.  A  ( { j }  X.  C ) " {
m } )
45 nfcv 2629 . . . . . . . 8  |-  F/_ j
m
46 nfmpt21 6348 . . . . . . . 8  |-  F/_ j
( j  e.  A ,  k  e.  C  |->  X )
47 nfcv 2629 . . . . . . . 8  |-  F/_ j
n
4845, 46, 47nfov 6307 . . . . . . 7  |-  F/_ j
( m ( j  e.  A ,  k  e.  C  |->  X ) n )
4944, 48nfmpt 4535 . . . . . 6  |-  F/_ j
( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
m } )  |->  ( m ( j  e.  A ,  k  e.  C  |->  X ) n ) )
5040, 41, 49nfov 6307 . . . . 5  |-  F/_ j
( G  gsumg  ( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
m } )  |->  ( m ( j  e.  A ,  k  e.  C  |->  X ) n ) ) )
51 nfcv 2629 . . . . 5  |-  F/_ m
( G  gsumg  ( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) ) )
52 sneq 4037 . . . . . . . 8  |-  ( m  =  j  ->  { m }  =  { j } )
5352imaeq2d 5337 . . . . . . 7  |-  ( m  =  j  ->  ( U_ j  e.  A  ( { j }  X.  C ) " {
m } )  =  ( U_ j  e.  A  ( { j }  X.  C )
" { j } ) )
54 oveq1 6291 . . . . . . 7  |-  ( m  =  j  ->  (
m ( j  e.  A ,  k  e.  C  |->  X ) n )  =  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) )
5553, 54mpteq12dv 4525 . . . . . 6  |-  ( m  =  j  ->  (
n  e.  ( U_ j  e.  A  ( { j }  X.  C ) " {
m } )  |->  ( m ( j  e.  A ,  k  e.  C  |->  X ) n ) )  =  ( n  e.  ( U_ j  e.  A  ( { j }  X.  C ) " {
j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) ) )
5655oveq2d 6300 . . . . 5  |-  ( m  =  j  ->  ( G  gsumg  ( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
m } )  |->  ( m ( j  e.  A ,  k  e.  C  |->  X ) n ) ) )  =  ( G  gsumg  ( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) ) ) )
5750, 51, 56cbvmpt 4537 . . . 4  |-  ( m  e.  A  |->  ( G 
gsumg  ( n  e.  ( U_ j  e.  A  ( { j }  X.  C ) " {
m } )  |->  ( m ( j  e.  A ,  k  e.  C  |->  X ) n ) ) ) )  =  ( j  e.  A  |->  ( G  gsumg  ( n  e.  ( U_ j  e.  A  ( {
j }  X.  C
) " { j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) ) ) )
58 vex 3116 . . . . . . . . . . . . . 14  |-  j  e. 
_V
59 vex 3116 . . . . . . . . . . . . . 14  |-  k  e. 
_V
6058, 59elimasn 5362 . . . . . . . . . . . . 13  |-  ( k  e.  ( U_ j  e.  A  ( {
j }  X.  C
) " { j } )  <->  <. j ,  k >.  e.  U_ j  e.  A  ( {
j }  X.  C
) )
61 opeliunxp 5051 . . . . . . . . . . . . 13  |-  ( <.
j ,  k >.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  ( j  e.  A  /\  k  e.  C ) )
6260, 61bitri 249 . . . . . . . . . . . 12  |-  ( k  e.  ( U_ j  e.  A  ( {
j }  X.  C
) " { j } )  <->  ( j  e.  A  /\  k  e.  C ) )
6362baib 901 . . . . . . . . . . 11  |-  ( j  e.  A  ->  (
k  e.  ( U_ j  e.  A  ( { j }  X.  C ) " {
j } )  <->  k  e.  C ) )
6463eqrdv 2464 . . . . . . . . . 10  |-  ( j  e.  A  ->  ( U_ j  e.  A  ( { j }  X.  C ) " {
j } )  =  C )
6564mpteq1d 4528 . . . . . . . . 9  |-  ( j  e.  A  ->  (
n  e.  ( U_ j  e.  A  ( { j }  X.  C ) " {
j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) )  =  ( n  e.  C  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) ) )
66 nfcv 2629 . . . . . . . . . . 11  |-  F/_ k
j
67 nfmpt22 6349 . . . . . . . . . . 11  |-  F/_ k
( j  e.  A ,  k  e.  C  |->  X )
68 nfcv 2629 . . . . . . . . . . 11  |-  F/_ k
n
6966, 67, 68nfov 6307 . . . . . . . . . 10  |-  F/_ k
( j ( j  e.  A ,  k  e.  C  |->  X ) n )
70 nfcv 2629 . . . . . . . . . 10  |-  F/_ n
( j ( j  e.  A ,  k  e.  C  |->  X ) k )
71 oveq2 6292 . . . . . . . . . 10  |-  ( n  =  k  ->  (
j ( j  e.  A ,  k  e.  C  |->  X ) n )  =  ( j ( j  e.  A ,  k  e.  C  |->  X ) k ) )
7269, 70, 71cbvmpt 4537 . . . . . . . . 9  |-  ( n  e.  C  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) )  =  ( k  e.  C  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) k ) )
7365, 72syl6eq 2524 . . . . . . . 8  |-  ( j  e.  A  ->  (
n  e.  ( U_ j  e.  A  ( { j }  X.  C ) " {
j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) )  =  ( k  e.  C  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) k ) ) )
7473adantl 466 . . . . . . 7  |-  ( (
ph  /\  j  e.  A )  ->  (
n  e.  ( U_ j  e.  A  ( { j }  X.  C ) " {
j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) )  =  ( k  e.  C  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) k ) ) )
75 simprl 755 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  C ) )  -> 
j  e.  A )
76 simprr 756 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  C ) )  -> 
k  e.  C )
7733ovmpt4g 6409 . . . . . . . . . 10  |-  ( ( j  e.  A  /\  k  e.  C  /\  X  e.  B )  ->  ( j ( j  e.  A ,  k  e.  C  |->  X ) k )  =  X )
7875, 76, 31, 77syl3anc 1228 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  C ) )  -> 
( j ( j  e.  A ,  k  e.  C  |->  X ) k )  =  X )
7978anassrs 648 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  A )  /\  k  e.  C )  ->  (
j ( j  e.  A ,  k  e.  C  |->  X ) k )  =  X )
8079mpteq2dva 4533 . . . . . . 7  |-  ( (
ph  /\  j  e.  A )  ->  (
k  e.  C  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) k ) )  =  ( k  e.  C  |->  X ) )
8174, 80eqtrd 2508 . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  (
n  e.  ( U_ j  e.  A  ( { j }  X.  C ) " {
j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) )  =  ( k  e.  C  |->  X ) )
8281oveq2d 6300 . . . . 5  |-  ( (
ph  /\  j  e.  A )  ->  ( G  gsumg  ( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) ) )  =  ( G  gsumg  ( k  e.  C  |->  X ) ) )
8382mpteq2dva 4533 . . . 4  |-  ( ph  ->  ( j  e.  A  |->  ( G  gsumg  ( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) ) ) )  =  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  X ) ) ) )
8457, 83syl5eq 2520 . . 3  |-  ( ph  ->  ( m  e.  A  |->  ( G  gsumg  ( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
m } )  |->  ( m ( j  e.  A ,  k  e.  C  |->  X ) n ) ) ) )  =  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  X ) ) ) )
8584oveq2d 6300 . 2  |-  ( ph  ->  ( G  gsumg  ( m  e.  A  |->  ( G  gsumg  ( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
m } )  |->  ( m ( j  e.  A ,  k  e.  C  |->  X ) n ) ) ) ) )  =  ( G 
gsumg  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  X ) ) ) ) )
8639, 85eqtrd 2508 1  |-  ( ph  ->  ( G  gsumg  ( j  e.  A ,  k  e.  C  |->  X ) )  =  ( G  gsumg  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  X ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767   A.wral 2814   _Vcvv 3113   {csn 4027   <.cop 4033   U_ciun 4325   class class class wbr 4447    |-> cmpt 4505    X. cxp 4997   dom cdm 4999   "cima 5002   Rel wrel 5004   -->wf 5584   ` cfv 5588  (class class class)co 6284    |-> cmpt2 6286   Fincfn 7516   Basecbs 14490   0gc0g 14695    gsumg cgsu 14696  CMndccmn 16604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-oi 7935  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-2 10594  df-n0 10796  df-z 10865  df-uz 11083  df-fz 11673  df-fzo 11793  df-seq 12076  df-hash 12374  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-0g 14697  df-gsum 14698  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606
This theorem is referenced by:  gsumdixpOLD  17058  gsumdixp  17059  psrass1lem  17828  gsumcom3  18696  gsummpt2co  27462
  Copyright terms: Public domain W3C validator