MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2d2 Structured version   Unicode version

Theorem gsum2d2 16464
Description: Write a group sum over a two-dimensional region as a double sum. (Note that  C ( j ) is a function of  j.) (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
gsum2d2.b  |-  B  =  ( Base `  G
)
gsum2d2.z  |-  .0.  =  ( 0g `  G )
gsum2d2.g  |-  ( ph  ->  G  e. CMnd )
gsum2d2.a  |-  ( ph  ->  A  e.  V )
gsum2d2.r  |-  ( (
ph  /\  j  e.  A )  ->  C  e.  W )
gsum2d2.f  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  C ) )  ->  X  e.  B )
gsum2d2.u  |-  ( ph  ->  U  e.  Fin )
gsum2d2.n  |-  ( (
ph  /\  ( (
j  e.  A  /\  k  e.  C )  /\  -.  j U k ) )  ->  X  =  .0.  )
Assertion
Ref Expression
gsum2d2  |-  ( ph  ->  ( G  gsumg  ( j  e.  A ,  k  e.  C  |->  X ) )  =  ( G  gsumg  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  X ) ) ) ) )
Distinct variable groups:    j, k, B    ph, j, k    A, j, k    j, G, k    U, j, k    C, k   
j, V    .0. , j,
k
Allowed substitution hints:    C( j)    V( k)    W( j, k)    X( j, k)

Proof of Theorem gsum2d2
Dummy variables  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsum2d2.b . . 3  |-  B  =  ( Base `  G
)
2 gsum2d2.z . . 3  |-  .0.  =  ( 0g `  G )
3 gsum2d2.g . . 3  |-  ( ph  ->  G  e. CMnd )
4 gsum2d2.a . . . 4  |-  ( ph  ->  A  e.  V )
5 snex 4531 . . . . . 6  |-  { j }  e.  _V
6 gsum2d2.r . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  C  e.  W )
7 xpexg 6505 . . . . . 6  |-  ( ( { j }  e.  _V  /\  C  e.  W
)  ->  ( {
j }  X.  C
)  e.  _V )
85, 6, 7sylancr 663 . . . . 5  |-  ( (
ph  /\  j  e.  A )  ->  ( { j }  X.  C )  e.  _V )
98ralrimiva 2797 . . . 4  |-  ( ph  ->  A. j  e.  A  ( { j }  X.  C )  e.  _V )
10 iunexg 6551 . . . 4  |-  ( ( A  e.  V  /\  A. j  e.  A  ( { j }  X.  C )  e.  _V )  ->  U_ j  e.  A  ( { j }  X.  C )  e.  _V )
114, 9, 10syl2anc 661 . . 3  |-  ( ph  ->  U_ j  e.  A  ( { j }  X.  C )  e.  _V )
12 relxp 4945 . . . . . 6  |-  Rel  ( { j }  X.  C )
1312rgenw 2781 . . . . 5  |-  A. j  e.  A  Rel  ( { j }  X.  C
)
14 reliun 4958 . . . . 5  |-  ( Rel  U_ j  e.  A  ( { j }  X.  C )  <->  A. j  e.  A  Rel  ( { j }  X.  C
) )
1513, 14mpbir 209 . . . 4  |-  Rel  U_ j  e.  A  ( {
j }  X.  C
)
1615a1i 11 . . 3  |-  ( ph  ->  Rel  U_ j  e.  A  ( { j }  X.  C ) )
17 vex 2973 . . . . . 6  |-  x  e. 
_V
1817eldm2 5036 . . . . 5  |-  ( x  e.  dom  U_ j  e.  A  ( {
j }  X.  C
)  <->  E. y <. x ,  y >.  e.  U_ j  e.  A  ( { j }  X.  C ) )
19 eliunxp 4975 . . . . . . 7  |-  ( <.
x ,  y >.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  E. j E. k ( <. x ,  y >.  =  <. j ,  k >.  /\  (
j  e.  A  /\  k  e.  C )
) )
20 vex 2973 . . . . . . . . . . . 12  |-  y  e. 
_V
2117, 20opth1 4563 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  =  <. j ,  k
>.  ->  x  =  j )
2221ad2antrl 727 . . . . . . . . . 10  |-  ( (
ph  /\  ( <. x ,  y >.  =  <. j ,  k >.  /\  (
j  e.  A  /\  k  e.  C )
) )  ->  x  =  j )
23 simprrl 763 . . . . . . . . . 10  |-  ( (
ph  /\  ( <. x ,  y >.  =  <. j ,  k >.  /\  (
j  e.  A  /\  k  e.  C )
) )  ->  j  e.  A )
2422, 23eqeltrd 2515 . . . . . . . . 9  |-  ( (
ph  /\  ( <. x ,  y >.  =  <. j ,  k >.  /\  (
j  e.  A  /\  k  e.  C )
) )  ->  x  e.  A )
2524ex 434 . . . . . . . 8  |-  ( ph  ->  ( ( <. x ,  y >.  =  <. j ,  k >.  /\  (
j  e.  A  /\  k  e.  C )
)  ->  x  e.  A ) )
2625exlimdvv 1691 . . . . . . 7  |-  ( ph  ->  ( E. j E. k ( <. x ,  y >.  =  <. j ,  k >.  /\  (
j  e.  A  /\  k  e.  C )
)  ->  x  e.  A ) )
2719, 26syl5bi 217 . . . . . 6  |-  ( ph  ->  ( <. x ,  y
>.  e.  U_ j  e.  A  ( { j }  X.  C )  ->  x  e.  A
) )
2827exlimdv 1690 . . . . 5  |-  ( ph  ->  ( E. y <.
x ,  y >.  e.  U_ j  e.  A  ( { j }  X.  C )  ->  x  e.  A ) )
2918, 28syl5bi 217 . . . 4  |-  ( ph  ->  ( x  e.  dom  U_ j  e.  A  ( { j }  X.  C )  ->  x  e.  A ) )
3029ssrdv 3360 . . 3  |-  ( ph  ->  dom  U_ j  e.  A  ( { j }  X.  C )  C_  A
)
31 gsum2d2.f . . . . 5  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  C ) )  ->  X  e.  B )
3231ralrimivva 2806 . . . 4  |-  ( ph  ->  A. j  e.  A  A. k  e.  C  X  e.  B )
33 eqid 2441 . . . . 5  |-  ( j  e.  A ,  k  e.  C  |->  X )  =  ( j  e.  A ,  k  e.  C  |->  X )
3433fmpt2x 6638 . . . 4  |-  ( A. j  e.  A  A. k  e.  C  X  e.  B  <->  ( j  e.  A ,  k  e.  C  |->  X ) :
U_ j  e.  A  ( { j }  X.  C ) --> B )
3532, 34sylib 196 . . 3  |-  ( ph  ->  ( j  e.  A ,  k  e.  C  |->  X ) : U_ j  e.  A  ( { j }  X.  C ) --> B )
36 gsum2d2.u . . . 4  |-  ( ph  ->  U  e.  Fin )
37 gsum2d2.n . . . 4  |-  ( (
ph  /\  ( (
j  e.  A  /\  k  e.  C )  /\  -.  j U k ) )  ->  X  =  .0.  )
381, 2, 3, 4, 6, 31, 36, 37gsum2d2lem 16463 . . 3  |-  ( ph  ->  ( j  e.  A ,  k  e.  C  |->  X ) finSupp  .0.  )
391, 2, 3, 11, 16, 4, 30, 35, 38gsum2d 16461 . 2  |-  ( ph  ->  ( G  gsumg  ( j  e.  A ,  k  e.  C  |->  X ) )  =  ( G  gsumg  ( m  e.  A  |->  ( G  gsumg  ( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
m } )  |->  ( m ( j  e.  A ,  k  e.  C  |->  X ) n ) ) ) ) ) )
40 nfcv 2577 . . . . . 6  |-  F/_ j G
41 nfcv 2577 . . . . . 6  |-  F/_ j  gsumg
42 nfiu1 4198 . . . . . . . 8  |-  F/_ j U_ j  e.  A  ( { j }  X.  C )
43 nfcv 2577 . . . . . . . 8  |-  F/_ j { m }
4442, 43nfima 5175 . . . . . . 7  |-  F/_ j
( U_ j  e.  A  ( { j }  X.  C ) " {
m } )
45 nfcv 2577 . . . . . . . 8  |-  F/_ j
m
46 nfmpt21 6151 . . . . . . . 8  |-  F/_ j
( j  e.  A ,  k  e.  C  |->  X )
47 nfcv 2577 . . . . . . . 8  |-  F/_ j
n
4845, 46, 47nfov 6112 . . . . . . 7  |-  F/_ j
( m ( j  e.  A ,  k  e.  C  |->  X ) n )
4944, 48nfmpt 4378 . . . . . 6  |-  F/_ j
( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
m } )  |->  ( m ( j  e.  A ,  k  e.  C  |->  X ) n ) )
5040, 41, 49nfov 6112 . . . . 5  |-  F/_ j
( G  gsumg  ( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
m } )  |->  ( m ( j  e.  A ,  k  e.  C  |->  X ) n ) ) )
51 nfcv 2577 . . . . 5  |-  F/_ m
( G  gsumg  ( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) ) )
52 sneq 3885 . . . . . . . 8  |-  ( m  =  j  ->  { m }  =  { j } )
5352imaeq2d 5167 . . . . . . 7  |-  ( m  =  j  ->  ( U_ j  e.  A  ( { j }  X.  C ) " {
m } )  =  ( U_ j  e.  A  ( { j }  X.  C )
" { j } ) )
54 oveq1 6096 . . . . . . 7  |-  ( m  =  j  ->  (
m ( j  e.  A ,  k  e.  C  |->  X ) n )  =  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) )
5553, 54mpteq12dv 4368 . . . . . 6  |-  ( m  =  j  ->  (
n  e.  ( U_ j  e.  A  ( { j }  X.  C ) " {
m } )  |->  ( m ( j  e.  A ,  k  e.  C  |->  X ) n ) )  =  ( n  e.  ( U_ j  e.  A  ( { j }  X.  C ) " {
j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) ) )
5655oveq2d 6105 . . . . 5  |-  ( m  =  j  ->  ( G  gsumg  ( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
m } )  |->  ( m ( j  e.  A ,  k  e.  C  |->  X ) n ) ) )  =  ( G  gsumg  ( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) ) ) )
5750, 51, 56cbvmpt 4380 . . . 4  |-  ( m  e.  A  |->  ( G 
gsumg  ( n  e.  ( U_ j  e.  A  ( { j }  X.  C ) " {
m } )  |->  ( m ( j  e.  A ,  k  e.  C  |->  X ) n ) ) ) )  =  ( j  e.  A  |->  ( G  gsumg  ( n  e.  ( U_ j  e.  A  ( {
j }  X.  C
) " { j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) ) ) )
58 vex 2973 . . . . . . . . . . . . . 14  |-  j  e. 
_V
59 vex 2973 . . . . . . . . . . . . . 14  |-  k  e. 
_V
6058, 59elimasn 5192 . . . . . . . . . . . . 13  |-  ( k  e.  ( U_ j  e.  A  ( {
j }  X.  C
) " { j } )  <->  <. j ,  k >.  e.  U_ j  e.  A  ( {
j }  X.  C
) )
61 opeliunxp 4888 . . . . . . . . . . . . 13  |-  ( <.
j ,  k >.  e.  U_ j  e.  A  ( { j }  X.  C )  <->  ( j  e.  A  /\  k  e.  C ) )
6260, 61bitri 249 . . . . . . . . . . . 12  |-  ( k  e.  ( U_ j  e.  A  ( {
j }  X.  C
) " { j } )  <->  ( j  e.  A  /\  k  e.  C ) )
6362baib 896 . . . . . . . . . . 11  |-  ( j  e.  A  ->  (
k  e.  ( U_ j  e.  A  ( { j }  X.  C ) " {
j } )  <->  k  e.  C ) )
6463eqrdv 2439 . . . . . . . . . 10  |-  ( j  e.  A  ->  ( U_ j  e.  A  ( { j }  X.  C ) " {
j } )  =  C )
6564mpteq1d 4371 . . . . . . . . 9  |-  ( j  e.  A  ->  (
n  e.  ( U_ j  e.  A  ( { j }  X.  C ) " {
j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) )  =  ( n  e.  C  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) ) )
66 nfcv 2577 . . . . . . . . . . 11  |-  F/_ k
j
67 nfmpt22 6152 . . . . . . . . . . 11  |-  F/_ k
( j  e.  A ,  k  e.  C  |->  X )
68 nfcv 2577 . . . . . . . . . . 11  |-  F/_ k
n
6966, 67, 68nfov 6112 . . . . . . . . . 10  |-  F/_ k
( j ( j  e.  A ,  k  e.  C  |->  X ) n )
70 nfcv 2577 . . . . . . . . . 10  |-  F/_ n
( j ( j  e.  A ,  k  e.  C  |->  X ) k )
71 oveq2 6097 . . . . . . . . . 10  |-  ( n  =  k  ->  (
j ( j  e.  A ,  k  e.  C  |->  X ) n )  =  ( j ( j  e.  A ,  k  e.  C  |->  X ) k ) )
7269, 70, 71cbvmpt 4380 . . . . . . . . 9  |-  ( n  e.  C  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) )  =  ( k  e.  C  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) k ) )
7365, 72syl6eq 2489 . . . . . . . 8  |-  ( j  e.  A  ->  (
n  e.  ( U_ j  e.  A  ( { j }  X.  C ) " {
j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) )  =  ( k  e.  C  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) k ) ) )
7473adantl 466 . . . . . . 7  |-  ( (
ph  /\  j  e.  A )  ->  (
n  e.  ( U_ j  e.  A  ( { j }  X.  C ) " {
j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) )  =  ( k  e.  C  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) k ) ) )
75 simprl 755 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  C ) )  -> 
j  e.  A )
76 simprr 756 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  C ) )  -> 
k  e.  C )
7733ovmpt4g 6211 . . . . . . . . . 10  |-  ( ( j  e.  A  /\  k  e.  C  /\  X  e.  B )  ->  ( j ( j  e.  A ,  k  e.  C  |->  X ) k )  =  X )
7875, 76, 31, 77syl3anc 1218 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  C ) )  -> 
( j ( j  e.  A ,  k  e.  C  |->  X ) k )  =  X )
7978anassrs 648 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  A )  /\  k  e.  C )  ->  (
j ( j  e.  A ,  k  e.  C  |->  X ) k )  =  X )
8079mpteq2dva 4376 . . . . . . 7  |-  ( (
ph  /\  j  e.  A )  ->  (
k  e.  C  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) k ) )  =  ( k  e.  C  |->  X ) )
8174, 80eqtrd 2473 . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  (
n  e.  ( U_ j  e.  A  ( { j }  X.  C ) " {
j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) )  =  ( k  e.  C  |->  X ) )
8281oveq2d 6105 . . . . 5  |-  ( (
ph  /\  j  e.  A )  ->  ( G  gsumg  ( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) ) )  =  ( G  gsumg  ( k  e.  C  |->  X ) ) )
8382mpteq2dva 4376 . . . 4  |-  ( ph  ->  ( j  e.  A  |->  ( G  gsumg  ( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
j } )  |->  ( j ( j  e.  A ,  k  e.  C  |->  X ) n ) ) ) )  =  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  X ) ) ) )
8457, 83syl5eq 2485 . . 3  |-  ( ph  ->  ( m  e.  A  |->  ( G  gsumg  ( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
m } )  |->  ( m ( j  e.  A ,  k  e.  C  |->  X ) n ) ) ) )  =  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  X ) ) ) )
8584oveq2d 6105 . 2  |-  ( ph  ->  ( G  gsumg  ( m  e.  A  |->  ( G  gsumg  ( n  e.  (
U_ j  e.  A  ( { j }  X.  C ) " {
m } )  |->  ( m ( j  e.  A ,  k  e.  C  |->  X ) n ) ) ) ) )  =  ( G 
gsumg  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  X ) ) ) ) )
8639, 85eqtrd 2473 1  |-  ( ph  ->  ( G  gsumg  ( j  e.  A ,  k  e.  C  |->  X ) )  =  ( G  gsumg  ( j  e.  A  |->  ( G  gsumg  ( k  e.  C  |->  X ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   A.wral 2713   _Vcvv 2970   {csn 3875   <.cop 3881   U_ciun 4169   class class class wbr 4290    e. cmpt 4348    X. cxp 4836   dom cdm 4838   "cima 4841   Rel wrel 4843   -->wf 5412   ` cfv 5416  (class class class)co 6089    e. cmpt2 6091   Fincfn 7308   Basecbs 14172   0gc0g 14376    gsumg cgsu 14377  CMndccmn 16275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-inf2 7845  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-iin 4172  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-se 4678  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-isom 5425  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-of 6318  df-om 6475  df-1st 6575  df-2nd 6576  df-supp 6689  df-recs 6830  df-rdg 6864  df-1o 6918  df-oadd 6922  df-er 7099  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-fsupp 7619  df-oi 7722  df-card 8107  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-nn 10321  df-2 10378  df-n0 10578  df-z 10645  df-uz 10860  df-fz 11436  df-fzo 11547  df-seq 11805  df-hash 12102  df-ndx 14175  df-slot 14176  df-base 14177  df-sets 14178  df-ress 14179  df-plusg 14249  df-0g 14378  df-gsum 14379  df-mre 14522  df-mrc 14523  df-acs 14525  df-mnd 15413  df-submnd 15463  df-mulg 15546  df-cntz 15833  df-cmn 16277
This theorem is referenced by:  gsumdixpOLD  16698  gsumdixp  16699  psrass1lem  17445  gsumcom3  18297  gsummpt2co  26247
  Copyright terms: Public domain W3C validator