MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grutsk1 Structured version   Unicode version

Theorem grutsk1 9188
Description: Grothendieck universes are the same as transitive Tarski classes, part one: a transitive Tarski class is a universe. (The hard work is in tskuni 9150.) (Contributed by Mario Carneiro, 17-Jun-2013.)
Assertion
Ref Expression
grutsk1  |-  ( ( T  e.  Tarski  /\  Tr  T )  ->  T  e.  Univ )

Proof of Theorem grutsk1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 461 . 2  |-  ( ( T  e.  Tarski  /\  Tr  T )  ->  Tr  T )
2 tskpw 9120 . . . . 5  |-  ( ( T  e.  Tarski  /\  x  e.  T )  ->  ~P x  e.  T )
32adantlr 714 . . . 4  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  x  e.  T )  ->  ~P x  e.  T
)
4 tskpr 9137 . . . . . . 7  |-  ( ( T  e.  Tarski  /\  x  e.  T  /\  y  e.  T )  ->  { x ,  y }  e.  T )
543expa 1191 . . . . . 6  |-  ( ( ( T  e.  Tarski  /\  x  e.  T )  /\  y  e.  T
)  ->  { x ,  y }  e.  T )
65ralrimiva 2871 . . . . 5  |-  ( ( T  e.  Tarski  /\  x  e.  T )  ->  A. y  e.  T  { x ,  y }  e.  T )
76adantlr 714 . . . 4  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  x  e.  T )  ->  A. y  e.  T  { x ,  y }  e.  T )
8 elmapg 7423 . . . . . . 7  |-  ( ( T  e.  Tarski  /\  x  e.  T )  ->  (
y  e.  ( T  ^m  x )  <->  y :
x --> T ) )
98adantlr 714 . . . . . 6  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  x  e.  T )  ->  ( y  e.  ( T  ^m  x )  <-> 
y : x --> T ) )
10 tskurn 9156 . . . . . . 7  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  x  e.  T  /\  y : x --> T )  ->  U. ran  y  e.  T )
11103expia 1193 . . . . . 6  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  x  e.  T )  ->  ( y : x --> T  ->  U. ran  y  e.  T ) )
129, 11sylbid 215 . . . . 5  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  x  e.  T )  ->  ( y  e.  ( T  ^m  x )  ->  U. ran  y  e.  T ) )
1312ralrimiv 2869 . . . 4  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  x  e.  T )  ->  A. y  e.  ( T  ^m  x ) U. ran  y  e.  T )
143, 7, 133jca 1171 . . 3  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  x  e.  T )  ->  ( ~P x  e.  T  /\  A. y  e.  T  { x ,  y }  e.  T  /\  A. y  e.  ( T  ^m  x
) U. ran  y  e.  T ) )
1514ralrimiva 2871 . 2  |-  ( ( T  e.  Tarski  /\  Tr  T )  ->  A. x  e.  T  ( ~P x  e.  T  /\  A. y  e.  T  {
x ,  y }  e.  T  /\  A. y  e.  ( T  ^m  x ) U. ran  y  e.  T )
)
16 elgrug 9159 . . 3  |-  ( T  e.  Tarski  ->  ( T  e. 
Univ 
<->  ( Tr  T  /\  A. x  e.  T  ( ~P x  e.  T  /\  A. y  e.  T  { x ,  y }  e.  T  /\  A. y  e.  ( T  ^m  x ) U. ran  y  e.  T
) ) ) )
1716adantr 465 . 2  |-  ( ( T  e.  Tarski  /\  Tr  T )  ->  ( T  e.  Univ  <->  ( Tr  T  /\  A. x  e.  T  ( ~P x  e.  T  /\  A. y  e.  T  { x ,  y }  e.  T  /\  A. y  e.  ( T  ^m  x
) U. ran  y  e.  T ) ) ) )
181, 15, 17mpbir2and 915 1  |-  ( ( T  e.  Tarski  /\  Tr  T )  ->  T  e.  Univ )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    e. wcel 1762   A.wral 2807   ~Pcpw 4003   {cpr 4022   U.cuni 4238   Tr wtr 4533   ran crn 4993   -->wf 5575  (class class class)co 6275    ^m cmap 7410   Tarskictsk 9115   Univcgru 9157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-ac2 8832
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-smo 7007  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-oi 7924  df-har 7973  df-r1 8171  df-card 8309  df-aleph 8310  df-cf 8311  df-acn 8312  df-ac 8486  df-wina 9051  df-ina 9052  df-tsk 9116  df-gru 9158
This theorem is referenced by:  grutsk  9189
  Copyright terms: Public domain W3C validator