MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grutsk Structured version   Unicode version

Theorem grutsk 9236
Description: Grothendieck universes are the same as transitive Tarski classes. (The proof in the forward direction requires Foundation.) (Contributed by Mario Carneiro, 24-Jun-2013.)
Assertion
Ref Expression
grutsk  |-  Univ  =  { x  e.  Tarski  |  Tr  x }

Proof of Theorem grutsk
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 0tsk 9169 . . . . . . . 8  |-  (/)  e.  Tarski
2 eleq1 2492 . . . . . . . 8  |-  ( y  =  (/)  ->  ( y  e.  Tarski 
<->  (/)  e.  Tarski ) )
31, 2mpbiri 236 . . . . . . 7  |-  ( y  =  (/)  ->  y  e. 
Tarski )
43a1i 11 . . . . . 6  |-  ( y  e.  Univ  ->  ( y  =  (/)  ->  y  e. 
Tarski ) )
5 vex 3081 . . . . . . . . . . 11  |-  y  e. 
_V
6 unir1 8274 . . . . . . . . . . 11  |-  U. ( R1 " On )  =  _V
75, 6eleqtrri 2507 . . . . . . . . . 10  |-  y  e. 
U. ( R1 " On )
8 eqid 2420 . . . . . . . . . . 11  |-  ( y  i^i  On )  =  ( y  i^i  On )
98grur1 9234 . . . . . . . . . 10  |-  ( ( y  e.  Univ  /\  y  e.  U. ( R1 " On ) )  ->  y  =  ( R1 `  ( y  i^i  On ) ) )
107, 9mpan2 675 . . . . . . . . 9  |-  ( y  e.  Univ  ->  y  =  ( R1 `  (
y  i^i  On )
) )
1110adantr 466 . . . . . . . 8  |-  ( ( y  e.  Univ  /\  y  =/=  (/) )  ->  y  =  ( R1 `  ( y  i^i  On ) ) )
128gruina 9232 . . . . . . . . 9  |-  ( ( y  e.  Univ  /\  y  =/=  (/) )  ->  (
y  i^i  On )  e.  Inacc )
13 inatsk 9192 . . . . . . . . 9  |-  ( ( y  i^i  On )  e.  Inacc  ->  ( R1 `  ( y  i^i  On ) )  e.  Tarski )
1412, 13syl 17 . . . . . . . 8  |-  ( ( y  e.  Univ  /\  y  =/=  (/) )  ->  ( R1 `  ( y  i^i 
On ) )  e. 
Tarski )
1511, 14eqeltrd 2508 . . . . . . 7  |-  ( ( y  e.  Univ  /\  y  =/=  (/) )  ->  y  e.  Tarski )
1615ex 435 . . . . . 6  |-  ( y  e.  Univ  ->  ( y  =/=  (/)  ->  y  e.  Tarski ) )
174, 16pm2.61dne 2739 . . . . 5  |-  ( y  e.  Univ  ->  y  e. 
Tarski )
18 grutr 9207 . . . . 5  |-  ( y  e.  Univ  ->  Tr  y
)
1917, 18jca 534 . . . 4  |-  ( y  e.  Univ  ->  ( y  e.  Tarski  /\  Tr  y
) )
20 grutsk1 9235 . . . 4  |-  ( ( y  e.  Tarski  /\  Tr  y )  ->  y  e.  Univ )
2119, 20impbii 190 . . 3  |-  ( y  e.  Univ  <->  ( y  e. 
Tarski  /\  Tr  y ) )
22 treq 4517 . . . 4  |-  ( x  =  y  ->  ( Tr  x  <->  Tr  y )
)
2322elrab 3226 . . 3  |-  ( y  e.  { x  e. 
Tarski  |  Tr  x }  <->  ( y  e.  Tarski  /\  Tr  y ) )
2421, 23bitr4i 255 . 2  |-  ( y  e.  Univ  <->  y  e.  {
x  e.  Tarski  |  Tr  x } )
2524eqriv 2416 1  |-  Univ  =  { x  e.  Tarski  |  Tr  x }
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1867    =/= wne 2616   {crab 2777   _Vcvv 3078    i^i cin 3432   (/)c0 3758   U.cuni 4213   Tr wtr 4511   "cima 4848   Oncon0 5433   ` cfv 5592   R1cr1 8223   Inacccina 9097   Tarskictsk 9162   Univcgru 9204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-reg 8098  ax-inf2 8137  ax-ac2 8882
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-int 4250  df-iun 4295  df-iin 4296  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-se 4805  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-isom 5601  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7027  df-smo 7064  df-recs 7089  df-rdg 7127  df-1o 7181  df-2o 7182  df-oadd 7185  df-er 7362  df-map 7473  df-ixp 7522  df-en 7569  df-dom 7570  df-sdom 7571  df-fin 7572  df-oi 8016  df-har 8064  df-tc 8211  df-r1 8225  df-rank 8226  df-card 8363  df-aleph 8364  df-cf 8365  df-acn 8366  df-ac 8536  df-wina 9098  df-ina 9099  df-tsk 9163  df-gru 9205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator