MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grutr Structured version   Unicode version

Theorem grutr 8960
Description: A Grothendieck universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
grutr  |-  ( U  e.  Univ  ->  Tr  U
)

Proof of Theorem grutr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elgrug 8959 . . 3  |-  ( U  e.  Univ  ->  ( U  e.  Univ  <->  ( Tr  U  /\  A. x  e.  U  ( ~P x  e.  U  /\  A. y  e.  U  { x ,  y }  e.  U  /\  A. y  e.  ( U  ^m  x ) U. ran  y  e.  U
) ) ) )
21ibi 241 . 2  |-  ( U  e.  Univ  ->  ( Tr  U  /\  A. x  e.  U  ( ~P x  e.  U  /\  A. y  e.  U  {
x ,  y }  e.  U  /\  A. y  e.  ( U  ^m  x ) U. ran  y  e.  U )
) )
32simpld 459 1  |-  ( U  e.  Univ  ->  Tr  U
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    e. wcel 1756   A.wral 2715   ~Pcpw 3860   {cpr 3879   U.cuni 4091   Tr wtr 4385   ran crn 4841  (class class class)co 6091    ^m cmap 7214   Univcgru 8957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-tr 4386  df-iota 5381  df-fv 5426  df-ov 6094  df-gru 8958
This theorem is referenced by:  gruelss  8961  gruwun  8980  intgru  8981  gruina  8985  grur1  8987  grutsk  8989
  Copyright terms: Public domain W3C validator