MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grur1a Structured version   Unicode version

Theorem grur1a 8982
Description: A characterization of Grothendieck universes, part 1. (Contributed by Mario Carneiro, 23-Jun-2013.)
Hypothesis
Ref Expression
gruina.1  |-  A  =  ( U  i^i  On )
Assertion
Ref Expression
grur1a  |-  ( U  e.  Univ  ->  ( R1
`  A )  C_  U )

Proof of Theorem grur1a
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gruina.1 . . . . . 6  |-  A  =  ( U  i^i  On )
2 inss1 3567 . . . . . 6  |-  ( U  i^i  On )  C_  U
31, 2eqsstri 3383 . . . . 5  |-  A  C_  U
4 sseq2 3375 . . . . 5  |-  ( U  =  (/)  ->  ( A 
C_  U  <->  A  C_  (/) ) )
53, 4mpbii 211 . . . 4  |-  ( U  =  (/)  ->  A  C_  (/) )
6 ss0 3665 . . . 4  |-  ( A 
C_  (/)  ->  A  =  (/) )
7 fveq2 5688 . . . . . 6  |-  ( A  =  (/)  ->  ( R1
`  A )  =  ( R1 `  (/) ) )
8 r10 7971 . . . . . 6  |-  ( R1
`  (/) )  =  (/)
97, 8syl6eq 2489 . . . . 5  |-  ( A  =  (/)  ->  ( R1
`  A )  =  (/) )
10 0ss 3663 . . . . 5  |-  (/)  C_  U
119, 10syl6eqss 3403 . . . 4  |-  ( A  =  (/)  ->  ( R1
`  A )  C_  U )
125, 6, 113syl 20 . . 3  |-  ( U  =  (/)  ->  ( R1
`  A )  C_  U )
1312a1i 11 . 2  |-  ( U  e.  Univ  ->  ( U  =  (/)  ->  ( R1
`  A )  C_  U ) )
141gruina 8981 . . . . 5  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  A  e.  Inacc )
15 inawina 8853 . . . . 5  |-  ( A  e.  Inacc  ->  A  e.  InaccW )
16 winaon 8851 . . . . . 6  |-  ( A  e.  InaccW  ->  A  e.  On )
17 winalim 8858 . . . . . 6  |-  ( A  e.  InaccW  ->  Lim  A )
18 r1lim 7975 . . . . . 6  |-  ( ( A  e.  On  /\  Lim  A )  ->  ( R1 `  A )  = 
U_ x  e.  A  ( R1 `  x ) )
1916, 17, 18syl2anc 656 . . . . 5  |-  ( A  e.  InaccW  ->  ( R1 `  A )  = 
U_ x  e.  A  ( R1 `  x ) )
2014, 15, 193syl 20 . . . 4  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  ( R1 `  A )  = 
U_ x  e.  A  ( R1 `  x ) )
21 inss2 3568 . . . . . . . . . . . 12  |-  ( U  i^i  On )  C_  On
221, 21eqsstri 3383 . . . . . . . . . . 11  |-  A  C_  On
2322sseli 3349 . . . . . . . . . 10  |-  ( x  e.  A  ->  x  e.  On )
24 eleq1 2501 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( x  e.  A  <->  (/)  e.  A
) )
25 fveq2 5688 . . . . . . . . . . . . . . 15  |-  ( x  =  (/)  ->  ( R1
`  x )  =  ( R1 `  (/) ) )
2625, 8syl6eq 2489 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  ( R1
`  x )  =  (/) )
2726eleq1d 2507 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( ( R1 `  x )  e.  U  <->  (/)  e.  U
) )
2824, 27imbi12d 320 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( ( x  e.  A  -> 
( R1 `  x
)  e.  U )  <-> 
( (/)  e.  A  ->  (/) 
e.  U ) ) )
29 eleq1 2501 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
30 fveq2 5688 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( R1 `  x )  =  ( R1 `  y
) )
3130eleq1d 2507 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( R1 `  x
)  e.  U  <->  ( R1 `  y )  e.  U
) )
3229, 31imbi12d 320 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( x  e.  A  ->  ( R1 `  x
)  e.  U )  <-> 
( y  e.  A  ->  ( R1 `  y
)  e.  U ) ) )
33 eleq1 2501 . . . . . . . . . . . . 13  |-  ( x  =  suc  y  -> 
( x  e.  A  <->  suc  y  e.  A ) )
34 fveq2 5688 . . . . . . . . . . . . . 14  |-  ( x  =  suc  y  -> 
( R1 `  x
)  =  ( R1
`  suc  y )
)
3534eleq1d 2507 . . . . . . . . . . . . 13  |-  ( x  =  suc  y  -> 
( ( R1 `  x )  e.  U  <->  ( R1 `  suc  y
)  e.  U ) )
3633, 35imbi12d 320 . . . . . . . . . . . 12  |-  ( x  =  suc  y  -> 
( ( x  e.  A  ->  ( R1 `  x )  e.  U
)  <->  ( suc  y  e.  A  ->  ( R1
`  suc  y )  e.  U ) ) )
373sseli 3349 . . . . . . . . . . . . 13  |-  ( (/)  e.  A  ->  (/)  e.  U
)
3837a1i 11 . . . . . . . . . . . 12  |-  ( U  e.  Univ  ->  ( (/)  e.  A  ->  (/)  e.  U
) )
39 simpr 458 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  suc  y  e.  A
)
40 elelsuc 4787 . . . . . . . . . . . . . . . . . 18  |-  ( suc  y  e.  A  ->  suc  y  e.  suc  A )
413sseli 3349 . . . . . . . . . . . . . . . . . . . . 21  |-  ( suc  y  e.  A  ->  suc  y  e.  U
)
42 ne0i 3640 . . . . . . . . . . . . . . . . . . . . 21  |-  ( suc  y  e.  U  ->  U  =/=  (/) )
4341, 42syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( suc  y  e.  A  ->  U  =/=  (/) )
4414, 15, 163syl 20 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  A  e.  On )
4543, 44sylan2 471 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  A  e.  On )
46 eloni 4725 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  On  ->  Ord  A )
47 ordsucelsuc 6432 . . . . . . . . . . . . . . . . . . 19  |-  ( Ord 
A  ->  ( y  e.  A  <->  suc  y  e.  suc  A ) )
4845, 46, 473syl 20 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  ( y  e.  A  <->  suc  y  e.  suc  A
) )
4940, 48syl5ibr 221 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  ( suc  y  e.  A  ->  y  e.  A ) )
5039, 49mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  y  e.  A )
51 grupw 8958 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  Univ  /\  ( R1 `  y )  e.  U )  ->  ~P ( R1 `  y )  e.  U )
5251ex 434 . . . . . . . . . . . . . . . . . 18  |-  ( U  e.  Univ  ->  ( ( R1 `  y )  e.  U  ->  ~P ( R1 `  y )  e.  U ) )
5352adantr 462 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  ( ( R1 `  y )  e.  U  ->  ~P ( R1 `  y )  e.  U
) )
54 r1suc 7973 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  On  ->  ( R1 `  suc  y )  =  ~P ( R1
`  y ) )
5554eleq1d 2507 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  On  ->  (
( R1 `  suc  y )  e.  U  <->  ~P ( R1 `  y
)  e.  U ) )
5655biimprcd 225 . . . . . . . . . . . . . . . . 17  |-  ( ~P ( R1 `  y
)  e.  U  -> 
( y  e.  On  ->  ( R1 `  suc  y )  e.  U
) )
5753, 56syl6 33 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  ( ( R1 `  y )  e.  U  ->  ( y  e.  On  ->  ( R1 `  suc  y )  e.  U
) ) )
5850, 57embantd 54 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  Univ  /\  suc  y  e.  A )  ->  ( ( y  e.  A  ->  ( R1 `  y )  e.  U
)  ->  ( y  e.  On  ->  ( R1 ` 
suc  y )  e.  U ) ) )
5958ex 434 . . . . . . . . . . . . . 14  |-  ( U  e.  Univ  ->  ( suc  y  e.  A  -> 
( ( y  e.  A  ->  ( R1 `  y )  e.  U
)  ->  ( y  e.  On  ->  ( R1 ` 
suc  y )  e.  U ) ) ) )
6059com23 78 . . . . . . . . . . . . 13  |-  ( U  e.  Univ  ->  ( ( y  e.  A  -> 
( R1 `  y
)  e.  U )  ->  ( suc  y  e.  A  ->  ( y  e.  On  ->  ( R1 `  suc  y )  e.  U ) ) ) )
6160com4r 86 . . . . . . . . . . . 12  |-  ( y  e.  On  ->  ( U  e.  Univ  ->  (
( y  e.  A  ->  ( R1 `  y
)  e.  U )  ->  ( suc  y  e.  A  ->  ( R1
`  suc  y )  e.  U ) ) ) )
62 simpr 458 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  x  e.  A )
633sseli 3349 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  A  ->  x  e.  U )
64 ne0i 3640 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  U  ->  U  =/=  (/) )
6563, 64syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  A  ->  U  =/=  (/) )
6665, 44sylan2 471 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  A  e.  On )
67 ontr1 4761 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  On  ->  (
( y  e.  x  /\  x  e.  A
)  ->  y  e.  A ) )
68 pm2.27 39 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  A  ->  (
( y  e.  A  ->  ( R1 `  y
)  e.  U )  ->  ( R1 `  y )  e.  U
) )
6967, 68syl6 33 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  On  ->  (
( y  e.  x  /\  x  e.  A
)  ->  ( (
y  e.  A  -> 
( R1 `  y
)  e.  U )  ->  ( R1 `  y )  e.  U
) ) )
7069exp3a 436 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  On  ->  (
y  e.  x  -> 
( x  e.  A  ->  ( ( y  e.  A  ->  ( R1 `  y )  e.  U
)  ->  ( R1 `  y )  e.  U
) ) ) )
7170com3r 79 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  A  ->  ( A  e.  On  ->  ( y  e.  x  -> 
( ( y  e.  A  ->  ( R1 `  y )  e.  U
)  ->  ( R1 `  y )  e.  U
) ) ) )
7262, 66, 71sylc 60 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  (
y  e.  x  -> 
( ( y  e.  A  ->  ( R1 `  y )  e.  U
)  ->  ( R1 `  y )  e.  U
) ) )
7372imp 429 . . . . . . . . . . . . . . . . 17  |-  ( ( ( U  e.  Univ  /\  x  e.  A )  /\  y  e.  x
)  ->  ( (
y  e.  A  -> 
( R1 `  y
)  e.  U )  ->  ( R1 `  y )  e.  U
) )
7473ralimdva 2792 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  ( A. y  e.  x  ( y  e.  A  ->  ( R1 `  y
)  e.  U )  ->  A. y  e.  x  ( R1 `  y )  e.  U ) )
75 gruiun 8962 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  Univ  /\  x  e.  U  /\  A. y  e.  x  ( R1 `  y )  e.  U
)  ->  U_ y  e.  x  ( R1 `  y )  e.  U
)
76753expia 1184 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ( A. y  e.  x  ( R1 `  y )  e.  U  ->  U_ y  e.  x  ( R1 `  y )  e.  U
) )
7763, 76sylan2 471 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  ( A. y  e.  x  ( R1 `  y )  e.  U  ->  U_ y  e.  x  ( R1 `  y )  e.  U
) )
7874, 77syld 44 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  ( A. y  e.  x  ( y  e.  A  ->  ( R1 `  y
)  e.  U )  ->  U_ y  e.  x  ( R1 `  y )  e.  U ) )
79 vex 2973 . . . . . . . . . . . . . . . . . 18  |-  x  e. 
_V
80 r1lim 7975 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( R1 `  x )  = 
U_ y  e.  x  ( R1 `  y ) )
8179, 80mpan 665 . . . . . . . . . . . . . . . . 17  |-  ( Lim  x  ->  ( R1 `  x )  =  U_ y  e.  x  ( R1 `  y ) )
8281eleq1d 2507 . . . . . . . . . . . . . . . 16  |-  ( Lim  x  ->  ( ( R1 `  x )  e.  U  <->  U_ y  e.  x  ( R1 `  y )  e.  U ) )
8382biimprd 223 . . . . . . . . . . . . . . 15  |-  ( Lim  x  ->  ( U_ y  e.  x  ( R1 `  y )  e.  U  ->  ( R1 `  x )  e.  U
) )
8478, 83sylan9r 653 . . . . . . . . . . . . . 14  |-  ( ( Lim  x  /\  ( U  e.  Univ  /\  x  e.  A ) )  -> 
( A. y  e.  x  ( y  e.  A  ->  ( R1 `  y )  e.  U
)  ->  ( R1 `  x )  e.  U
) )
8584exp32 602 . . . . . . . . . . . . 13  |-  ( Lim  x  ->  ( U  e.  Univ  ->  ( x  e.  A  ->  ( A. y  e.  x  (
y  e.  A  -> 
( R1 `  y
)  e.  U )  ->  ( R1 `  x )  e.  U
) ) ) )
8685com34 83 . . . . . . . . . . . 12  |-  ( Lim  x  ->  ( U  e.  Univ  ->  ( A. y  e.  x  (
y  e.  A  -> 
( R1 `  y
)  e.  U )  ->  ( x  e.  A  ->  ( R1 `  x )  e.  U
) ) ) )
8728, 32, 36, 38, 61, 86tfinds2 6473 . . . . . . . . . . 11  |-  ( x  e.  On  ->  ( U  e.  Univ  ->  (
x  e.  A  -> 
( R1 `  x
)  e.  U ) ) )
8887com3r 79 . . . . . . . . . 10  |-  ( x  e.  A  ->  (
x  e.  On  ->  ( U  e.  Univ  ->  ( R1 `  x )  e.  U ) ) )
8923, 88mpd 15 . . . . . . . . 9  |-  ( x  e.  A  ->  ( U  e.  Univ  ->  ( R1 `  x )  e.  U ) )
9089impcom 430 . . . . . . . 8  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  ( R1 `  x )  e.  U )
91 gruelss 8957 . . . . . . . 8  |-  ( ( U  e.  Univ  /\  ( R1 `  x )  e.  U )  ->  ( R1 `  x )  C_  U )
9290, 91syldan 467 . . . . . . 7  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  ( R1 `  x )  C_  U )
9392ralrimiva 2797 . . . . . 6  |-  ( U  e.  Univ  ->  A. x  e.  A  ( R1 `  x )  C_  U
)
94 iunss 4208 . . . . . 6  |-  ( U_ x  e.  A  ( R1 `  x )  C_  U 
<-> 
A. x  e.  A  ( R1 `  x ) 
C_  U )
9593, 94sylibr 212 . . . . 5  |-  ( U  e.  Univ  ->  U_ x  e.  A  ( R1 `  x )  C_  U
)
9695adantr 462 . . . 4  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  U_ x  e.  A  ( R1 `  x )  C_  U
)
9720, 96eqsstrd 3387 . . 3  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  ( R1 `  A )  C_  U )
9897ex 434 . 2  |-  ( U  e.  Univ  ->  ( U  =/=  (/)  ->  ( R1 `  A )  C_  U
) )
9913, 98pm2.61dne 2686 1  |-  ( U  e.  Univ  ->  ( R1
`  A )  C_  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   _Vcvv 2970    i^i cin 3324    C_ wss 3325   (/)c0 3634   ~Pcpw 3857   U_ciun 4168   Ord word 4714   Oncon0 4715   Lim wlim 4716   suc csuc 4717   ` cfv 5415   R1cr1 7965   InaccWcwina 8845   Inacccina 8846   Univcgru 8953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-ac2 8628
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6828  df-rdg 6862  df-1o 6916  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-r1 7967  df-card 8105  df-cf 8107  df-ac 8282  df-wina 8847  df-ina 8848  df-gru 8954
This theorem is referenced by:  grur1  8983
  Copyright terms: Public domain W3C validator