MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grur1 Structured version   Unicode version

Theorem grur1 9194
Description: A characterization of Grothendieck universes, part 2. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
gruina.1  |-  A  =  ( U  i^i  On )
Assertion
Ref Expression
grur1  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  U  =  ( R1 `  A ) )

Proof of Theorem grur1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nss 3562 . . . . 5  |-  ( -.  U  C_  ( R1 `  A )  <->  E. x
( x  e.  U  /\  -.  x  e.  ( R1 `  A ) ) )
2 fveq2 5864 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( rank `  y )  =  ( rank `  x
) )
32eqeq1d 2469 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
( rank `  y )  =  A  <->  ( rank `  x
)  =  A ) )
43rspcev 3214 . . . . . . . . . 10  |-  ( ( x  e.  U  /\  ( rank `  x )  =  A )  ->  E. y  e.  U  ( rank `  y )  =  A )
54ex 434 . . . . . . . . 9  |-  ( x  e.  U  ->  (
( rank `  x )  =  A  ->  E. y  e.  U  ( rank `  y )  =  A ) )
65ad2antrl 727 . . . . . . . 8  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( ( rank `  x
)  =  A  ->  E. y  e.  U  ( rank `  y )  =  A ) )
7 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  U  e.  U. ( R1 " On ) )
8 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  x  e.  U )
9 r1elssi 8219 . . . . . . . . . . . . 13  |-  ( U  e.  U. ( R1
" On )  ->  U  C_  U. ( R1
" On ) )
109sseld 3503 . . . . . . . . . . . 12  |-  ( U  e.  U. ( R1
" On )  -> 
( x  e.  U  ->  x  e.  U. ( R1 " On ) ) )
117, 8, 10sylc 60 . . . . . . . . . . 11  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  x  e.  U. ( R1 " On ) )
12 tcrank 8298 . . . . . . . . . . 11  |-  ( x  e.  U. ( R1
" On )  -> 
( rank `  x )  =  ( rank " ( TC `  x ) ) )
1311, 12syl 16 . . . . . . . . . 10  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( rank `  x )  =  ( rank " ( TC `  x ) ) )
1413eleq2d 2537 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( A  e.  (
rank `  x )  <->  A  e.  ( rank " ( TC `  x ) ) ) )
15 gruelss 9168 . . . . . . . . . . . 12  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  x  C_  U )
16 grutr 9167 . . . . . . . . . . . . 13  |-  ( U  e.  Univ  ->  Tr  U
)
1716adantr 465 . . . . . . . . . . . 12  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  Tr  U )
18 vex 3116 . . . . . . . . . . . . 13  |-  x  e. 
_V
19 tcmin 8168 . . . . . . . . . . . . 13  |-  ( x  e.  _V  ->  (
( x  C_  U  /\  Tr  U )  -> 
( TC `  x
)  C_  U )
)
2018, 19ax-mp 5 . . . . . . . . . . . 12  |-  ( ( x  C_  U  /\  Tr  U )  ->  ( TC `  x )  C_  U )
2115, 17, 20syl2anc 661 . . . . . . . . . . 11  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ( TC `  x )  C_  U )
22 rankf 8208 . . . . . . . . . . . . 13  |-  rank : U. ( R1 " On ) --> On
23 ffun 5731 . . . . . . . . . . . . 13  |-  ( rank
: U. ( R1
" On ) --> On 
->  Fun  rank )
2422, 23ax-mp 5 . . . . . . . . . . . 12  |-  Fun  rank
25 fvelima 5917 . . . . . . . . . . . 12  |-  ( ( Fun  rank  /\  A  e.  ( rank " ( TC `  x ) ) )  ->  E. y  e.  ( TC `  x
) ( rank `  y
)  =  A )
2624, 25mpan 670 . . . . . . . . . . 11  |-  ( A  e.  ( rank " ( TC `  x ) )  ->  E. y  e.  ( TC `  x ) ( rank `  y
)  =  A )
27 ssrexv 3565 . . . . . . . . . . 11  |-  ( ( TC `  x ) 
C_  U  ->  ( E. y  e.  ( TC `  x ) (
rank `  y )  =  A  ->  E. y  e.  U  ( rank `  y )  =  A ) )
2821, 26, 27syl2im 38 . . . . . . . . . 10  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ( A  e.  ( rank " ( TC `  x
) )  ->  E. y  e.  U  ( rank `  y )  =  A ) )
2928ad2ant2r 746 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( A  e.  (
rank " ( TC `  x ) )  ->  E. y  e.  U  ( rank `  y )  =  A ) )
3014, 29sylbid 215 . . . . . . . 8  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( A  e.  (
rank `  x )  ->  E. y  e.  U  ( rank `  y )  =  A ) )
31 simprr 756 . . . . . . . . . 10  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  -.  x  e.  ( R1 `  A ) )
32 ne0i 3791 . . . . . . . . . . . . . . 15  |-  ( x  e.  U  ->  U  =/=  (/) )
33 gruina.1 . . . . . . . . . . . . . . . 16  |-  A  =  ( U  i^i  On )
3433gruina 9192 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  A  e.  Inacc )
3532, 34sylan2 474 . . . . . . . . . . . . . 14  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  A  e.  Inacc )
36 inawina 9064 . . . . . . . . . . . . . 14  |-  ( A  e.  Inacc  ->  A  e.  InaccW )
37 winaon 9062 . . . . . . . . . . . . . 14  |-  ( A  e.  InaccW  ->  A  e.  On )
3835, 36, 373syl 20 . . . . . . . . . . . . 13  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  A  e.  On )
39 r1fnon 8181 . . . . . . . . . . . . . 14  |-  R1  Fn  On
40 fndm 5678 . . . . . . . . . . . . . 14  |-  ( R1  Fn  On  ->  dom  R1  =  On )
4139, 40ax-mp 5 . . . . . . . . . . . . 13  |-  dom  R1  =  On
4238, 41syl6eleqr 2566 . . . . . . . . . . . 12  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  A  e.  dom  R1 )
4342ad2ant2r 746 . . . . . . . . . . 11  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  A  e.  dom  R1 )
44 rankr1ag 8216 . . . . . . . . . . 11  |-  ( ( x  e.  U. ( R1 " On )  /\  A  e.  dom  R1 )  ->  ( x  e.  ( R1 `  A
)  <->  ( rank `  x
)  e.  A ) )
4511, 43, 44syl2anc 661 . . . . . . . . . 10  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( x  e.  ( R1 `  A )  <-> 
( rank `  x )  e.  A ) )
4631, 45mtbid 300 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  -.  ( rank `  x
)  e.  A )
47 rankon 8209 . . . . . . . . . . . . 13  |-  ( rank `  x )  e.  On
48 eloni 4888 . . . . . . . . . . . . . 14  |-  ( (
rank `  x )  e.  On  ->  Ord  ( rank `  x ) )
49 eloni 4888 . . . . . . . . . . . . . 14  |-  ( A  e.  On  ->  Ord  A )
50 ordtri3or 4910 . . . . . . . . . . . . . 14  |-  ( ( Ord  ( rank `  x
)  /\  Ord  A )  ->  ( ( rank `  x )  e.  A  \/  ( rank `  x
)  =  A  \/  A  e.  ( rank `  x ) ) )
5148, 49, 50syl2an 477 . . . . . . . . . . . . 13  |-  ( ( ( rank `  x
)  e.  On  /\  A  e.  On )  ->  ( ( rank `  x
)  e.  A  \/  ( rank `  x )  =  A  \/  A  e.  ( rank `  x
) ) )
5247, 38, 51sylancr 663 . . . . . . . . . . . 12  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  (
( rank `  x )  e.  A  \/  ( rank `  x )  =  A  \/  A  e.  ( rank `  x
) ) )
53 3orass 976 . . . . . . . . . . . 12  |-  ( ( ( rank `  x
)  e.  A  \/  ( rank `  x )  =  A  \/  A  e.  ( rank `  x
) )  <->  ( ( rank `  x )  e.  A  \/  ( (
rank `  x )  =  A  \/  A  e.  ( rank `  x
) ) ) )
5452, 53sylib 196 . . . . . . . . . . 11  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  (
( rank `  x )  e.  A  \/  (
( rank `  x )  =  A  \/  A  e.  ( rank `  x
) ) ) )
5554ord 377 . . . . . . . . . 10  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ( -.  ( rank `  x
)  e.  A  -> 
( ( rank `  x
)  =  A  \/  A  e.  ( rank `  x ) ) ) )
5655ad2ant2r 746 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( -.  ( rank `  x )  e.  A  ->  ( ( rank `  x
)  =  A  \/  A  e.  ( rank `  x ) ) ) )
5746, 56mpd 15 . . . . . . . 8  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( ( rank `  x
)  =  A  \/  A  e.  ( rank `  x ) ) )
586, 30, 57mpjaod 381 . . . . . . 7  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  E. y  e.  U  ( rank `  y )  =  A )
5958ex 434 . . . . . 6  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  (
( x  e.  U  /\  -.  x  e.  ( R1 `  A ) )  ->  E. y  e.  U  ( rank `  y )  =  A ) )
6059exlimdv 1700 . . . . 5  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  ( E. x ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) )  ->  E. y  e.  U  ( rank `  y )  =  A ) )
611, 60syl5bi 217 . . . 4  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  ( -.  U  C_  ( R1
`  A )  ->  E. y  e.  U  ( rank `  y )  =  A ) )
62 simpll 753 . . . . . . 7  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  U  e.  Univ )
63 ne0i 3791 . . . . . . . . . 10  |-  ( y  e.  U  ->  U  =/=  (/) )
6463, 34sylan2 474 . . . . . . . . 9  |-  ( ( U  e.  Univ  /\  y  e.  U )  ->  A  e.  Inacc )
6564ad2ant2r 746 . . . . . . . 8  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  A  e.  Inacc )
6665, 36, 373syl 20 . . . . . . 7  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  A  e.  On )
67 simprl 755 . . . . . . 7  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  y  e.  U )
68 fveq2 5864 . . . . . . . . . 10  |-  ( (
rank `  y )  =  A  ->  ( cf `  ( rank `  y
) )  =  ( cf `  A ) )
6968ad2antll 728 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  ( cf `  ( rank `  y
) )  =  ( cf `  A ) )
70 elina 9061 . . . . . . . . . . 11  |-  ( A  e.  Inacc 
<->  ( A  =/=  (/)  /\  ( cf `  A )  =  A  /\  A. x  e.  A  ~P x  ~<  A ) )
7170simp2bi 1012 . . . . . . . . . 10  |-  ( A  e.  Inacc  ->  ( cf `  A )  =  A )
7265, 71syl 16 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  ( cf `  A )  =  A )
7369, 72eqtrd 2508 . . . . . . . 8  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  ( cf `  ( rank `  y
) )  =  A )
74 rankcf 9151 . . . . . . . . 9  |-  -.  y  ~<  ( cf `  ( rank `  y ) )
75 fvex 5874 . . . . . . . . . 10  |-  ( cf `  ( rank `  y
) )  e.  _V
76 vex 3116 . . . . . . . . . 10  |-  y  e. 
_V
77 domtri 8927 . . . . . . . . . 10  |-  ( ( ( cf `  ( rank `  y ) )  e.  _V  /\  y  e.  _V )  ->  (
( cf `  ( rank `  y ) )  ~<_  y  <->  -.  y  ~<  ( cf `  ( rank `  y ) ) ) )
7875, 76, 77mp2an 672 . . . . . . . . 9  |-  ( ( cf `  ( rank `  y ) )  ~<_  y  <->  -.  y  ~<  ( cf `  ( rank `  y
) ) )
7974, 78mpbir 209 . . . . . . . 8  |-  ( cf `  ( rank `  y
) )  ~<_  y
8073, 79syl6eqbrr 4485 . . . . . . 7  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  A  ~<_  y )
81 grudomon 9191 . . . . . . 7  |-  ( ( U  e.  Univ  /\  A  e.  On  /\  ( y  e.  U  /\  A  ~<_  y ) )  ->  A  e.  U )
8262, 66, 67, 80, 81syl112anc 1232 . . . . . 6  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  A  e.  U )
83 elin 3687 . . . . . . . . 9  |-  ( A  e.  ( U  i^i  On )  <->  ( A  e.  U  /\  A  e.  On ) )
8483biimpri 206 . . . . . . . 8  |-  ( ( A  e.  U  /\  A  e.  On )  ->  A  e.  ( U  i^i  On ) )
8584, 33syl6eleqr 2566 . . . . . . 7  |-  ( ( A  e.  U  /\  A  e.  On )  ->  A  e.  A )
86 ordirr 4896 . . . . . . . . 9  |-  ( Ord 
A  ->  -.  A  e.  A )
8749, 86syl 16 . . . . . . . 8  |-  ( A  e.  On  ->  -.  A  e.  A )
8887adantl 466 . . . . . . 7  |-  ( ( A  e.  U  /\  A  e.  On )  ->  -.  A  e.  A
)
8985, 88pm2.21dd 174 . . . . . 6  |-  ( ( A  e.  U  /\  A  e.  On )  ->  U  C_  ( R1 `  A ) )
9082, 66, 89syl2anc 661 . . . . 5  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  U  C_  ( R1 `  A
) )
9190rexlimdvaa 2956 . . . 4  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  ( E. y  e.  U  ( rank `  y )  =  A  ->  U  C_  ( R1 `  A ) ) )
9261, 91syld 44 . . 3  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  ( -.  U  C_  ( R1
`  A )  ->  U  C_  ( R1 `  A ) ) )
9392pm2.18d 111 . 2  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  U  C_  ( R1 `  A
) )
9433grur1a 9193 . . 3  |-  ( U  e.  Univ  ->  ( R1
`  A )  C_  U )
9594adantr 465 . 2  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  ( R1 `  A )  C_  U )
9693, 95eqssd 3521 1  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  U  =  ( R1 `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 972    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   _Vcvv 3113    i^i cin 3475    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   U.cuni 4245   class class class wbr 4447   Tr wtr 4540   Ord word 4877   Oncon0 4878   dom cdm 4999   "cima 5002   Fun wfun 5580    Fn wfn 5581   -->wf 5582   ` cfv 5586    ~<_ cdom 7511    ~< csdm 7512   TCctc 8163   R1cr1 8176   rankcrnk 8177   cfccf 8314   InaccWcwina 9056   Inacccina 9057   Univcgru 9164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-ac2 8839
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-tc 8164  df-r1 8178  df-rank 8179  df-card 8316  df-cf 8318  df-acn 8319  df-ac 8493  df-wina 9058  df-ina 9059  df-gru 9165
This theorem is referenced by:  grutsk  9196  bj-grur1  33671
  Copyright terms: Public domain W3C validator