MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grur1 Structured version   Unicode version

Theorem grur1 9245
Description: A characterization of Grothendieck universes, part 2. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
gruina.1  |-  A  =  ( U  i^i  On )
Assertion
Ref Expression
grur1  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  U  =  ( R1 `  A ) )

Proof of Theorem grur1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nss 3522 . . . . 5  |-  ( -.  U  C_  ( R1 `  A )  <->  E. x
( x  e.  U  /\  -.  x  e.  ( R1 `  A ) ) )
2 fveq2 5877 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( rank `  y )  =  ( rank `  x
) )
32eqeq1d 2424 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
( rank `  y )  =  A  <->  ( rank `  x
)  =  A ) )
43rspcev 3182 . . . . . . . . . 10  |-  ( ( x  e.  U  /\  ( rank `  x )  =  A )  ->  E. y  e.  U  ( rank `  y )  =  A )
54ex 435 . . . . . . . . 9  |-  ( x  e.  U  ->  (
( rank `  x )  =  A  ->  E. y  e.  U  ( rank `  y )  =  A ) )
65ad2antrl 732 . . . . . . . 8  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( ( rank `  x
)  =  A  ->  E. y  e.  U  ( rank `  y )  =  A ) )
7 simplr 760 . . . . . . . . . . . 12  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  U  e.  U. ( R1 " On ) )
8 simprl 762 . . . . . . . . . . . 12  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  x  e.  U )
9 r1elssi 8277 . . . . . . . . . . . . 13  |-  ( U  e.  U. ( R1
" On )  ->  U  C_  U. ( R1
" On ) )
109sseld 3463 . . . . . . . . . . . 12  |-  ( U  e.  U. ( R1
" On )  -> 
( x  e.  U  ->  x  e.  U. ( R1 " On ) ) )
117, 8, 10sylc 62 . . . . . . . . . . 11  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  x  e.  U. ( R1 " On ) )
12 tcrank 8356 . . . . . . . . . . 11  |-  ( x  e.  U. ( R1
" On )  -> 
( rank `  x )  =  ( rank " ( TC `  x ) ) )
1311, 12syl 17 . . . . . . . . . 10  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( rank `  x )  =  ( rank " ( TC `  x ) ) )
1413eleq2d 2492 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( A  e.  (
rank `  x )  <->  A  e.  ( rank " ( TC `  x ) ) ) )
15 gruelss 9219 . . . . . . . . . . . 12  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  x  C_  U )
16 grutr 9218 . . . . . . . . . . . . 13  |-  ( U  e.  Univ  ->  Tr  U
)
1716adantr 466 . . . . . . . . . . . 12  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  Tr  U )
18 vex 3084 . . . . . . . . . . . . 13  |-  x  e. 
_V
19 tcmin 8226 . . . . . . . . . . . . 13  |-  ( x  e.  _V  ->  (
( x  C_  U  /\  Tr  U )  -> 
( TC `  x
)  C_  U )
)
2018, 19ax-mp 5 . . . . . . . . . . . 12  |-  ( ( x  C_  U  /\  Tr  U )  ->  ( TC `  x )  C_  U )
2115, 17, 20syl2anc 665 . . . . . . . . . . 11  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ( TC `  x )  C_  U )
22 rankf 8266 . . . . . . . . . . . . 13  |-  rank : U. ( R1 " On ) --> On
23 ffun 5744 . . . . . . . . . . . . 13  |-  ( rank
: U. ( R1
" On ) --> On 
->  Fun  rank )
2422, 23ax-mp 5 . . . . . . . . . . . 12  |-  Fun  rank
25 fvelima 5929 . . . . . . . . . . . 12  |-  ( ( Fun  rank  /\  A  e.  ( rank " ( TC `  x ) ) )  ->  E. y  e.  ( TC `  x
) ( rank `  y
)  =  A )
2624, 25mpan 674 . . . . . . . . . . 11  |-  ( A  e.  ( rank " ( TC `  x ) )  ->  E. y  e.  ( TC `  x ) ( rank `  y
)  =  A )
27 ssrexv 3526 . . . . . . . . . . 11  |-  ( ( TC `  x ) 
C_  U  ->  ( E. y  e.  ( TC `  x ) (
rank `  y )  =  A  ->  E. y  e.  U  ( rank `  y )  =  A ) )
2821, 26, 27syl2im 39 . . . . . . . . . 10  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ( A  e.  ( rank " ( TC `  x
) )  ->  E. y  e.  U  ( rank `  y )  =  A ) )
2928ad2ant2r 751 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( A  e.  (
rank " ( TC `  x ) )  ->  E. y  e.  U  ( rank `  y )  =  A ) )
3014, 29sylbid 218 . . . . . . . 8  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( A  e.  (
rank `  x )  ->  E. y  e.  U  ( rank `  y )  =  A ) )
31 simprr 764 . . . . . . . . . 10  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  -.  x  e.  ( R1 `  A ) )
32 ne0i 3767 . . . . . . . . . . . . . . 15  |-  ( x  e.  U  ->  U  =/=  (/) )
33 gruina.1 . . . . . . . . . . . . . . . 16  |-  A  =  ( U  i^i  On )
3433gruina 9243 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  A  e.  Inacc )
3532, 34sylan2 476 . . . . . . . . . . . . . 14  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  A  e.  Inacc )
36 inawina 9115 . . . . . . . . . . . . . 14  |-  ( A  e.  Inacc  ->  A  e.  InaccW )
37 winaon 9113 . . . . . . . . . . . . . 14  |-  ( A  e.  InaccW  ->  A  e.  On )
3835, 36, 373syl 18 . . . . . . . . . . . . 13  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  A  e.  On )
39 r1fnon 8239 . . . . . . . . . . . . . 14  |-  R1  Fn  On
40 fndm 5689 . . . . . . . . . . . . . 14  |-  ( R1  Fn  On  ->  dom  R1  =  On )
4139, 40ax-mp 5 . . . . . . . . . . . . 13  |-  dom  R1  =  On
4238, 41syl6eleqr 2521 . . . . . . . . . . . 12  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  A  e.  dom  R1 )
4342ad2ant2r 751 . . . . . . . . . . 11  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  A  e.  dom  R1 )
44 rankr1ag 8274 . . . . . . . . . . 11  |-  ( ( x  e.  U. ( R1 " On )  /\  A  e.  dom  R1 )  ->  ( x  e.  ( R1 `  A
)  <->  ( rank `  x
)  e.  A ) )
4511, 43, 44syl2anc 665 . . . . . . . . . 10  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( x  e.  ( R1 `  A )  <-> 
( rank `  x )  e.  A ) )
4631, 45mtbid 301 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  -.  ( rank `  x
)  e.  A )
47 rankon 8267 . . . . . . . . . . . . 13  |-  ( rank `  x )  e.  On
48 eloni 5448 . . . . . . . . . . . . . 14  |-  ( (
rank `  x )  e.  On  ->  Ord  ( rank `  x ) )
49 eloni 5448 . . . . . . . . . . . . . 14  |-  ( A  e.  On  ->  Ord  A )
50 ordtri3or 5470 . . . . . . . . . . . . . 14  |-  ( ( Ord  ( rank `  x
)  /\  Ord  A )  ->  ( ( rank `  x )  e.  A  \/  ( rank `  x
)  =  A  \/  A  e.  ( rank `  x ) ) )
5148, 49, 50syl2an 479 . . . . . . . . . . . . 13  |-  ( ( ( rank `  x
)  e.  On  /\  A  e.  On )  ->  ( ( rank `  x
)  e.  A  \/  ( rank `  x )  =  A  \/  A  e.  ( rank `  x
) ) )
5247, 38, 51sylancr 667 . . . . . . . . . . . 12  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  (
( rank `  x )  e.  A  \/  ( rank `  x )  =  A  \/  A  e.  ( rank `  x
) ) )
53 3orass 985 . . . . . . . . . . . 12  |-  ( ( ( rank `  x
)  e.  A  \/  ( rank `  x )  =  A  \/  A  e.  ( rank `  x
) )  <->  ( ( rank `  x )  e.  A  \/  ( (
rank `  x )  =  A  \/  A  e.  ( rank `  x
) ) ) )
5452, 53sylib 199 . . . . . . . . . . 11  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  (
( rank `  x )  e.  A  \/  (
( rank `  x )  =  A  \/  A  e.  ( rank `  x
) ) ) )
5554ord 378 . . . . . . . . . 10  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ( -.  ( rank `  x
)  e.  A  -> 
( ( rank `  x
)  =  A  \/  A  e.  ( rank `  x ) ) ) )
5655ad2ant2r 751 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( -.  ( rank `  x )  e.  A  ->  ( ( rank `  x
)  =  A  \/  A  e.  ( rank `  x ) ) ) )
5746, 56mpd 15 . . . . . . . 8  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  -> 
( ( rank `  x
)  =  A  \/  A  e.  ( rank `  x ) ) )
586, 30, 57mpjaod 382 . . . . . . 7  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) ) )  ->  E. y  e.  U  ( rank `  y )  =  A )
5958ex 435 . . . . . 6  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  (
( x  e.  U  /\  -.  x  e.  ( R1 `  A ) )  ->  E. y  e.  U  ( rank `  y )  =  A ) )
6059exlimdv 1768 . . . . 5  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  ( E. x ( x  e.  U  /\  -.  x  e.  ( R1 `  A
) )  ->  E. y  e.  U  ( rank `  y )  =  A ) )
611, 60syl5bi 220 . . . 4  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  ( -.  U  C_  ( R1
`  A )  ->  E. y  e.  U  ( rank `  y )  =  A ) )
62 simpll 758 . . . . . . 7  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  U  e.  Univ )
63 ne0i 3767 . . . . . . . . . 10  |-  ( y  e.  U  ->  U  =/=  (/) )
6463, 34sylan2 476 . . . . . . . . 9  |-  ( ( U  e.  Univ  /\  y  e.  U )  ->  A  e.  Inacc )
6564ad2ant2r 751 . . . . . . . 8  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  A  e.  Inacc )
6665, 36, 373syl 18 . . . . . . 7  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  A  e.  On )
67 simprl 762 . . . . . . 7  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  y  e.  U )
68 fveq2 5877 . . . . . . . . . 10  |-  ( (
rank `  y )  =  A  ->  ( cf `  ( rank `  y
) )  =  ( cf `  A ) )
6968ad2antll 733 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  ( cf `  ( rank `  y
) )  =  ( cf `  A ) )
70 elina 9112 . . . . . . . . . . 11  |-  ( A  e.  Inacc 
<->  ( A  =/=  (/)  /\  ( cf `  A )  =  A  /\  A. x  e.  A  ~P x  ~<  A ) )
7170simp2bi 1021 . . . . . . . . . 10  |-  ( A  e.  Inacc  ->  ( cf `  A )  =  A )
7265, 71syl 17 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  ( cf `  A )  =  A )
7369, 72eqtrd 2463 . . . . . . . 8  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  ( cf `  ( rank `  y
) )  =  A )
74 rankcf 9202 . . . . . . . . 9  |-  -.  y  ~<  ( cf `  ( rank `  y ) )
75 fvex 5887 . . . . . . . . . 10  |-  ( cf `  ( rank `  y
) )  e.  _V
76 vex 3084 . . . . . . . . . 10  |-  y  e. 
_V
77 domtri 8981 . . . . . . . . . 10  |-  ( ( ( cf `  ( rank `  y ) )  e.  _V  /\  y  e.  _V )  ->  (
( cf `  ( rank `  y ) )  ~<_  y  <->  -.  y  ~<  ( cf `  ( rank `  y ) ) ) )
7875, 76, 77mp2an 676 . . . . . . . . 9  |-  ( ( cf `  ( rank `  y ) )  ~<_  y  <->  -.  y  ~<  ( cf `  ( rank `  y
) ) )
7974, 78mpbir 212 . . . . . . . 8  |-  ( cf `  ( rank `  y
) )  ~<_  y
8073, 79syl6eqbrr 4459 . . . . . . 7  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  A  ~<_  y )
81 grudomon 9242 . . . . . . 7  |-  ( ( U  e.  Univ  /\  A  e.  On  /\  ( y  e.  U  /\  A  ~<_  y ) )  ->  A  e.  U )
8262, 66, 67, 80, 81syl112anc 1268 . . . . . 6  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  A  e.  U )
83 elin 3649 . . . . . . . . 9  |-  ( A  e.  ( U  i^i  On )  <->  ( A  e.  U  /\  A  e.  On ) )
8483biimpri 209 . . . . . . . 8  |-  ( ( A  e.  U  /\  A  e.  On )  ->  A  e.  ( U  i^i  On ) )
8584, 33syl6eleqr 2521 . . . . . . 7  |-  ( ( A  e.  U  /\  A  e.  On )  ->  A  e.  A )
86 ordirr 5456 . . . . . . . . 9  |-  ( Ord 
A  ->  -.  A  e.  A )
8749, 86syl 17 . . . . . . . 8  |-  ( A  e.  On  ->  -.  A  e.  A )
8887adantl 467 . . . . . . 7  |-  ( ( A  e.  U  /\  A  e.  On )  ->  -.  A  e.  A
)
8985, 88pm2.21dd 177 . . . . . 6  |-  ( ( A  e.  U  /\  A  e.  On )  ->  U  C_  ( R1 `  A ) )
9082, 66, 89syl2anc 665 . . . . 5  |-  ( ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  /\  ( y  e.  U  /\  ( rank `  y )  =  A ) )  ->  U  C_  ( R1 `  A
) )
9190rexlimdvaa 2918 . . . 4  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  ( E. y  e.  U  ( rank `  y )  =  A  ->  U  C_  ( R1 `  A ) ) )
9261, 91syld 45 . . 3  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  ( -.  U  C_  ( R1
`  A )  ->  U  C_  ( R1 `  A ) ) )
9392pm2.18d 114 . 2  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  U  C_  ( R1 `  A
) )
9433grur1a 9244 . . 3  |-  ( U  e.  Univ  ->  ( R1
`  A )  C_  U )
9594adantr 466 . 2  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  ( R1 `  A )  C_  U )
9693, 95eqssd 3481 1  |-  ( ( U  e.  Univ  /\  U  e.  U. ( R1 " On ) )  ->  U  =  ( R1 `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    \/ w3o 981    = wceq 1437   E.wex 1659    e. wcel 1868    =/= wne 2618   A.wral 2775   E.wrex 2776   _Vcvv 3081    i^i cin 3435    C_ wss 3436   (/)c0 3761   ~Pcpw 3979   U.cuni 4216   class class class wbr 4420   Tr wtr 4515   dom cdm 4849   "cima 4852   Ord word 5437   Oncon0 5438   Fun wfun 5591    Fn wfn 5592   -->wf 5593   ` cfv 5597    ~<_ cdom 7571    ~< csdm 7572   TCctc 8221   R1cr1 8234   rankcrnk 8235   cfccf 8372   InaccWcwina 9107   Inacccina 9108   Univcgru 9215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-inf2 8148  ax-ac2 8893
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-iin 4299  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-se 4809  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-isom 5606  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-er 7367  df-map 7478  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-tc 8222  df-r1 8236  df-rank 8237  df-card 8374  df-cf 8376  df-acn 8377  df-ac 8547  df-wina 9109  df-ina 9110  df-gru 9216
This theorem is referenced by:  grutsk  9247  bj-grur1  31581
  Copyright terms: Public domain W3C validator