MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruima Structured version   Unicode version

Theorem gruima 8990
Description: A Grothendieck universe contains image sets drawn from its members. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruima  |-  ( ( U  e.  Univ  /\  Fun  F  /\  ( F " A )  C_  U
)  ->  ( A  e.  U  ->  ( F
" A )  e.  U ) )

Proof of Theorem gruima
StepHypRef Expression
1 simpl2 992 . . . 4  |-  ( ( ( U  e.  Univ  /\ 
Fun  F  /\  ( F " A )  C_  U )  /\  A  e.  U )  ->  Fun  F )
2 funrel 5456 . . . 4  |-  ( Fun 
F  ->  Rel  F )
3 resres 5144 . . . . . . 7  |-  ( ( F  |`  dom  F )  |`  A )  =  ( F  |`  ( dom  F  i^i  A ) )
4 resdm 5169 . . . . . . . 8  |-  ( Rel 
F  ->  ( F  |` 
dom  F )  =  F )
54reseq1d 5130 . . . . . . 7  |-  ( Rel 
F  ->  ( ( F  |`  dom  F )  |`  A )  =  ( F  |`  A )
)
63, 5syl5eqr 2489 . . . . . 6  |-  ( Rel 
F  ->  ( F  |`  ( dom  F  i^i  A ) )  =  ( F  |`  A )
)
76rneqd 5088 . . . . 5  |-  ( Rel 
F  ->  ran  ( F  |`  ( dom  F  i^i  A ) )  =  ran  ( F  |`  A ) )
8 df-ima 4874 . . . . 5  |-  ( F
" A )  =  ran  ( F  |`  A )
97, 8syl6reqr 2494 . . . 4  |-  ( Rel 
F  ->  ( F " A )  =  ran  ( F  |`  ( dom 
F  i^i  A )
) )
101, 2, 93syl 20 . . 3  |-  ( ( ( U  e.  Univ  /\ 
Fun  F  /\  ( F " A )  C_  U )  /\  A  e.  U )  ->  ( F " A )  =  ran  ( F  |`  ( dom  F  i^i  A
) ) )
11 simpl1 991 . . . 4  |-  ( ( ( U  e.  Univ  /\ 
Fun  F  /\  ( F " A )  C_  U )  /\  A  e.  U )  ->  U  e.  Univ )
12 simpr 461 . . . . 5  |-  ( ( ( U  e.  Univ  /\ 
Fun  F  /\  ( F " A )  C_  U )  /\  A  e.  U )  ->  A  e.  U )
13 inss2 3592 . . . . . 6  |-  ( dom 
F  i^i  A )  C_  A
1413a1i 11 . . . . 5  |-  ( ( ( U  e.  Univ  /\ 
Fun  F  /\  ( F " A )  C_  U )  /\  A  e.  U )  ->  ( dom  F  i^i  A ) 
C_  A )
15 gruss 8984 . . . . 5  |-  ( ( U  e.  Univ  /\  A  e.  U  /\  ( dom  F  i^i  A ) 
C_  A )  -> 
( dom  F  i^i  A )  e.  U )
1611, 12, 14, 15syl3anc 1218 . . . 4  |-  ( ( ( U  e.  Univ  /\ 
Fun  F  /\  ( F " A )  C_  U )  /\  A  e.  U )  ->  ( dom  F  i^i  A )  e.  U )
17 funforn 5648 . . . . . . . 8  |-  ( Fun 
F  <->  F : dom  F -onto-> ran  F )
18 fof 5641 . . . . . . . 8  |-  ( F : dom  F -onto-> ran  F  ->  F : dom  F --> ran  F )
1917, 18sylbi 195 . . . . . . 7  |-  ( Fun 
F  ->  F : dom  F --> ran  F )
20 inss1 3591 . . . . . . 7  |-  ( dom 
F  i^i  A )  C_ 
dom  F
21 fssres 5599 . . . . . . 7  |-  ( ( F : dom  F --> ran  F  /\  ( dom 
F  i^i  A )  C_ 
dom  F )  -> 
( F  |`  ( dom  F  i^i  A ) ) : ( dom 
F  i^i  A ) --> ran  F )
2219, 20, 21sylancl 662 . . . . . 6  |-  ( Fun 
F  ->  ( F  |`  ( dom  F  i^i  A ) ) : ( dom  F  i^i  A
) --> ran  F )
23 ffn 5580 . . . . . 6  |-  ( ( F  |`  ( dom  F  i^i  A ) ) : ( dom  F  i^i  A ) --> ran  F  ->  ( F  |`  ( dom  F  i^i  A ) )  Fn  ( dom 
F  i^i  A )
)
241, 22, 233syl 20 . . . . 5  |-  ( ( ( U  e.  Univ  /\ 
Fun  F  /\  ( F " A )  C_  U )  /\  A  e.  U )  ->  ( F  |`  ( dom  F  i^i  A ) )  Fn  ( dom  F  i^i  A ) )
25 simpl3 993 . . . . . 6  |-  ( ( ( U  e.  Univ  /\ 
Fun  F  /\  ( F " A )  C_  U )  /\  A  e.  U )  ->  ( F " A )  C_  U )
2610, 25eqsstr3d 3412 . . . . 5  |-  ( ( ( U  e.  Univ  /\ 
Fun  F  /\  ( F " A )  C_  U )  /\  A  e.  U )  ->  ran  ( F  |`  ( dom 
F  i^i  A )
)  C_  U )
27 df-f 5443 . . . . 5  |-  ( ( F  |`  ( dom  F  i^i  A ) ) : ( dom  F  i^i  A ) --> U  <->  ( ( F  |`  ( dom  F  i^i  A ) )  Fn  ( dom  F  i^i  A )  /\  ran  ( F  |`  ( dom  F  i^i  A ) )  C_  U ) )
2824, 26, 27sylanbrc 664 . . . 4  |-  ( ( ( U  e.  Univ  /\ 
Fun  F  /\  ( F " A )  C_  U )  /\  A  e.  U )  ->  ( F  |`  ( dom  F  i^i  A ) ) : ( dom  F  i^i  A ) --> U )
29 grurn 8989 . . . 4  |-  ( ( U  e.  Univ  /\  ( dom  F  i^i  A )  e.  U  /\  ( F  |`  ( dom  F  i^i  A ) ) : ( dom  F  i^i  A ) --> U )  ->  ran  ( F  |`  ( dom  F  i^i  A ) )  e.  U )
3011, 16, 28, 29syl3anc 1218 . . 3  |-  ( ( ( U  e.  Univ  /\ 
Fun  F  /\  ( F " A )  C_  U )  /\  A  e.  U )  ->  ran  ( F  |`  ( dom 
F  i^i  A )
)  e.  U )
3110, 30eqeltrd 2517 . 2  |-  ( ( ( U  e.  Univ  /\ 
Fun  F  /\  ( F " A )  C_  U )  /\  A  e.  U )  ->  ( F " A )  e.  U )
3231ex 434 1  |-  ( ( U  e.  Univ  /\  Fun  F  /\  ( F " A )  C_  U
)  ->  ( A  e.  U  ->  ( F
" A )  e.  U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    i^i cin 3348    C_ wss 3349   dom cdm 4861   ran crn 4862    |` cres 4863   "cima 4864   Rel wrel 4866   Fun wfun 5433    Fn wfn 5434   -->wf 5435   -onto->wfo 5437   Univcgru 8978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-sbc 3208  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-tr 4407  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-fo 5445  df-fv 5447  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-map 7237  df-gru 8979
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator