MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruiin Structured version   Unicode version

Theorem gruiin 9218
Description: A Grothendieck universe contains indexed intersections of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruiin  |-  ( ( U  e.  Univ  /\  E. x  e.  A  B  e.  U )  ->  |^|_ x  e.  A  B  e.  U )
Distinct variable groups:    x, U    x, A
Allowed substitution hint:    B( x)

Proof of Theorem gruiin
StepHypRef Expression
1 nfv 1728 . . 3  |-  F/ x  U  e.  Univ
2 nfii1 4302 . . . 4  |-  F/_ x |^|_ x  e.  A  B
32nfel1 2580 . . 3  |-  F/ x |^|_ x  e.  A  B  e.  U
4 iinss2 4323 . . . . . 6  |-  ( x  e.  A  ->  |^|_ x  e.  A  B  C_  B
)
5 gruss 9204 . . . . . 6  |-  ( ( U  e.  Univ  /\  B  e.  U  /\  |^|_ x  e.  A  B  C_  B
)  ->  |^|_ x  e.  A  B  e.  U
)
64, 5syl3an3 1265 . . . . 5  |-  ( ( U  e.  Univ  /\  B  e.  U  /\  x  e.  A )  ->  |^|_ x  e.  A  B  e.  U )
763exp 1196 . . . 4  |-  ( U  e.  Univ  ->  ( B  e.  U  ->  (
x  e.  A  ->  |^|_ x  e.  A  B  e.  U ) ) )
87com23 78 . . 3  |-  ( U  e.  Univ  ->  ( x  e.  A  ->  ( B  e.  U  ->  |^|_
x  e.  A  B  e.  U ) ) )
91, 3, 8rexlimd 2888 . 2  |-  ( U  e.  Univ  ->  ( E. x  e.  A  B  e.  U  ->  |^|_ x  e.  A  B  e.  U ) )
109imp 427 1  |-  ( ( U  e.  Univ  /\  E. x  e.  A  B  e.  U )  ->  |^|_ x  e.  A  B  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    e. wcel 1842   E.wrex 2755    C_ wss 3414   |^|_ciin 4272   Univcgru 9198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iin 4274  df-br 4396  df-tr 4490  df-iota 5533  df-fv 5577  df-ov 6281  df-gru 9199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator