MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grudomon Structured version   Visualization version   Unicode version

Theorem grudomon 9260
Description: Each ordinal that is comparable with an element of the universe is in the universe. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
grudomon  |-  ( ( U  e.  Univ  /\  A  e.  On  /\  ( B  e.  U  /\  A  ~<_  B ) )  ->  A  e.  U )

Proof of Theorem grudomon
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4398 . . . . . . . 8  |-  ( x  =  y  ->  (
x  ~<_  B  <->  y  ~<_  B ) )
2 eleq1 2537 . . . . . . . 8  |-  ( x  =  y  ->  (
x  e.  U  <->  y  e.  U ) )
31, 2imbi12d 327 . . . . . . 7  |-  ( x  =  y  ->  (
( x  ~<_  B  ->  x  e.  U )  <->  ( y  ~<_  B  ->  y  e.  U ) ) )
43imbi2d 323 . . . . . 6  |-  ( x  =  y  ->  (
( ( U  e. 
Univ  /\  B  e.  U
)  ->  ( x  ~<_  B  ->  x  e.  U
) )  <->  ( ( U  e.  Univ  /\  B  e.  U )  ->  (
y  ~<_  B  ->  y  e.  U ) ) ) )
5 breq1 4398 . . . . . . . 8  |-  ( x  =  A  ->  (
x  ~<_  B  <->  A  ~<_  B ) )
6 eleq1 2537 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  U  <->  A  e.  U ) )
75, 6imbi12d 327 . . . . . . 7  |-  ( x  =  A  ->  (
( x  ~<_  B  ->  x  e.  U )  <->  ( A  ~<_  B  ->  A  e.  U ) ) )
87imbi2d 323 . . . . . 6  |-  ( x  =  A  ->  (
( ( U  e. 
Univ  /\  B  e.  U
)  ->  ( x  ~<_  B  ->  x  e.  U
) )  <->  ( ( U  e.  Univ  /\  B  e.  U )  ->  ( A  ~<_  B  ->  A  e.  U ) ) ) )
9 r19.21v 2803 . . . . . . 7  |-  ( A. y  e.  x  (
( U  e.  Univ  /\  B  e.  U )  ->  ( y  ~<_  B  ->  y  e.  U
) )  <->  ( ( U  e.  Univ  /\  B  e.  U )  ->  A. y  e.  x  ( y  ~<_  B  ->  y  e.  U
) ) )
10 simpl1 1033 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  x  e.  On )
11 vex 3034 . . . . . . . . . . . . . . . . 17  |-  x  e. 
_V
12 onelss 5472 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  On  ->  (
y  e.  x  -> 
y  C_  x )
)
1312imp 436 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  C_  x )
14 ssdomg 7633 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  _V  ->  (
y  C_  x  ->  y  ~<_  x ) )
1511, 13, 14mpsyl 64 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  ~<_  x )
1610, 15sylan 479 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  On  /\  U  e. 
Univ  /\  B  e.  U
)  /\  x  ~<_  B )  /\  y  e.  x
)  ->  y  ~<_  x )
17 simplr 770 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  On  /\  U  e. 
Univ  /\  B  e.  U
)  /\  x  ~<_  B )  /\  y  e.  x
)  ->  x  ~<_  B )
18 domtr 7640 . . . . . . . . . . . . . . 15  |-  ( ( y  ~<_  x  /\  x  ~<_  B )  ->  y  ~<_  B )
1916, 17, 18syl2anc 673 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  On  /\  U  e. 
Univ  /\  B  e.  U
)  /\  x  ~<_  B )  /\  y  e.  x
)  ->  y  ~<_  B )
20 pm2.27 39 . . . . . . . . . . . . . 14  |-  ( y  ~<_  B  ->  ( (
y  ~<_  B  ->  y  e.  U )  ->  y  e.  U ) )
2119, 20syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  On  /\  U  e. 
Univ  /\  B  e.  U
)  /\  x  ~<_  B )  /\  y  e.  x
)  ->  ( (
y  ~<_  B  ->  y  e.  U )  ->  y  e.  U ) )
2221ralimdva 2805 . . . . . . . . . . . 12  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  ( A. y  e.  x  ( y  ~<_  B  -> 
y  e.  U )  ->  A. y  e.  x  y  e.  U )
)
23 dfss3 3408 . . . . . . . . . . . . 13  |-  ( x 
C_  U  <->  A. y  e.  x  y  e.  U )
24 domeng 7601 . . . . . . . . . . . . . . . 16  |-  ( B  e.  U  ->  (
x  ~<_  B  <->  E. y
( x  ~~  y  /\  y  C_  B ) ) )
25243ad2ant3 1053 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  ->  (
x  ~<_  B  <->  E. y
( x  ~~  y  /\  y  C_  B ) ) )
2625biimpa 492 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  E. y
( x  ~~  y  /\  y  C_  B ) )
27 simpl2 1034 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  U  e.  Univ )
28 gruss 9239 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( U  e.  Univ  /\  B  e.  U  /\  y  C_  B )  ->  y  e.  U )
29283expia 1233 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U  e.  Univ  /\  B  e.  U )  ->  (
y  C_  B  ->  y  e.  U ) )
30293adant1 1048 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  ->  (
y  C_  B  ->  y  e.  U ) )
3130adantr 472 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  (
y  C_  B  ->  y  e.  U ) )
32 ensym 7636 . . . . . . . . . . . . . . . . . . 19  |-  ( x 
~~  y  ->  y  ~~  x )
3332a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  (
x  ~~  y  ->  y 
~~  x ) )
3431, 33anim12d 572 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  (
( y  C_  B  /\  x  ~~  y )  ->  ( y  e.  U  /\  y  ~~  x ) ) )
3534ancomsd 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  (
( x  ~~  y  /\  y  C_  B )  ->  ( y  e.  U  /\  y  ~~  x ) ) )
3635eximdv 1772 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  ( E. y ( x  ~~  y  /\  y  C_  B
)  ->  E. y
( y  e.  U  /\  y  ~~  x ) ) )
37 gruen 9255 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  Univ  /\  x  C_  U  /\  ( y  e.  U  /\  y  ~~  x ) )  ->  x  e.  U )
38373com23 1237 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  Univ  /\  (
y  e.  U  /\  y  ~~  x )  /\  x  C_  U )  ->  x  e.  U )
39383exp 1230 . . . . . . . . . . . . . . . 16  |-  ( U  e.  Univ  ->  ( ( y  e.  U  /\  y  ~~  x )  -> 
( x  C_  U  ->  x  e.  U ) ) )
4039exlimdv 1787 . . . . . . . . . . . . . . 15  |-  ( U  e.  Univ  ->  ( E. y ( y  e.  U  /\  y  ~~  x )  ->  (
x  C_  U  ->  x  e.  U ) ) )
4127, 36, 40sylsyld 57 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  ( E. y ( x  ~~  y  /\  y  C_  B
)  ->  ( x  C_  U  ->  x  e.  U ) ) )
4226, 41mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  (
x  C_  U  ->  x  e.  U ) )
4323, 42syl5bir 226 . . . . . . . . . . . 12  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  ( A. y  e.  x  y  e.  U  ->  x  e.  U ) )
4422, 43syld 44 . . . . . . . . . . 11  |-  ( ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  /\  x  ~<_  B )  ->  ( A. y  e.  x  ( y  ~<_  B  -> 
y  e.  U )  ->  x  e.  U
) )
4544ex 441 . . . . . . . . . 10  |-  ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  ->  (
x  ~<_  B  ->  ( A. y  e.  x  ( y  ~<_  B  -> 
y  e.  U )  ->  x  e.  U
) ) )
4645com23 80 . . . . . . . . 9  |-  ( ( x  e.  On  /\  U  e.  Univ  /\  B  e.  U )  ->  ( A. y  e.  x  ( y  ~<_  B  -> 
y  e.  U )  ->  ( x  ~<_  B  ->  x  e.  U
) ) )
47463expib 1234 . . . . . . . 8  |-  ( x  e.  On  ->  (
( U  e.  Univ  /\  B  e.  U )  ->  ( A. y  e.  x  ( y  ~<_  B  ->  y  e.  U
)  ->  ( x  ~<_  B  ->  x  e.  U
) ) ) )
4847a2d 28 . . . . . . 7  |-  ( x  e.  On  ->  (
( ( U  e. 
Univ  /\  B  e.  U
)  ->  A. y  e.  x  ( y  ~<_  B  ->  y  e.  U
) )  ->  (
( U  e.  Univ  /\  B  e.  U )  ->  ( x  ~<_  B  ->  x  e.  U
) ) ) )
499, 48syl5bi 225 . . . . . 6  |-  ( x  e.  On  ->  ( A. y  e.  x  ( ( U  e. 
Univ  /\  B  e.  U
)  ->  ( y  ~<_  B  ->  y  e.  U
) )  ->  (
( U  e.  Univ  /\  B  e.  U )  ->  ( x  ~<_  B  ->  x  e.  U
) ) ) )
504, 8, 49tfis3 6703 . . . . 5  |-  ( A  e.  On  ->  (
( U  e.  Univ  /\  B  e.  U )  ->  ( A  ~<_  B  ->  A  e.  U
) ) )
5150com3l 83 . . . 4  |-  ( ( U  e.  Univ  /\  B  e.  U )  ->  ( A  ~<_  B  ->  ( A  e.  On  ->  A  e.  U ) ) )
5251impr 631 . . 3  |-  ( ( U  e.  Univ  /\  ( B  e.  U  /\  A  ~<_  B ) )  ->  ( A  e.  On  ->  A  e.  U ) )
53523impia 1228 . 2  |-  ( ( U  e.  Univ  /\  ( B  e.  U  /\  A  ~<_  B )  /\  A  e.  On )  ->  A  e.  U )
54533com23 1237 1  |-  ( ( U  e.  Univ  /\  A  e.  On  /\  ( B  e.  U  /\  A  ~<_  B ) )  ->  A  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452   E.wex 1671    e. wcel 1904   A.wral 2756   _Vcvv 3031    C_ wss 3390   class class class wbr 4395   Oncon0 5430    ~~ cen 7584    ~<_ cdom 7585   Univcgru 9233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-ord 5433  df-on 5434  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-gru 9234
This theorem is referenced by:  gruina  9261  grur1  9263
  Copyright terms: Public domain W3C validator