MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubinv Structured version   Unicode version

Theorem grpsubinv 15599
Description: Subtraction of an inverse. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
grpsubinv.b  |-  B  =  ( Base `  G
)
grpsubinv.p  |-  .+  =  ( +g  `  G )
grpsubinv.m  |-  .-  =  ( -g `  G )
grpsubinv.n  |-  N  =  ( invg `  G )
grpsubinv.g  |-  ( ph  ->  G  e.  Grp )
grpsubinv.x  |-  ( ph  ->  X  e.  B )
grpsubinv.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
grpsubinv  |-  ( ph  ->  ( X  .-  ( N `  Y )
)  =  ( X 
.+  Y ) )

Proof of Theorem grpsubinv
StepHypRef Expression
1 grpsubinv.x . . 3  |-  ( ph  ->  X  e.  B )
2 grpsubinv.g . . . 4  |-  ( ph  ->  G  e.  Grp )
3 grpsubinv.y . . . 4  |-  ( ph  ->  Y  e.  B )
4 grpsubinv.b . . . . 5  |-  B  =  ( Base `  G
)
5 grpsubinv.n . . . . 5  |-  N  =  ( invg `  G )
64, 5grpinvcl 15583 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
72, 3, 6syl2anc 661 . . 3  |-  ( ph  ->  ( N `  Y
)  e.  B )
8 grpsubinv.p . . . 4  |-  .+  =  ( +g  `  G )
9 grpsubinv.m . . . 4  |-  .-  =  ( -g `  G )
104, 8, 5, 9grpsubval 15581 . . 3  |-  ( ( X  e.  B  /\  ( N `  Y )  e.  B )  -> 
( X  .-  ( N `  Y )
)  =  ( X 
.+  ( N `  ( N `  Y ) ) ) )
111, 7, 10syl2anc 661 . 2  |-  ( ph  ->  ( X  .-  ( N `  Y )
)  =  ( X 
.+  ( N `  ( N `  Y ) ) ) )
124, 5grpinvinv 15593 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  ( N `  Y )
)  =  Y )
132, 3, 12syl2anc 661 . . 3  |-  ( ph  ->  ( N `  ( N `  Y )
)  =  Y )
1413oveq2d 6107 . 2  |-  ( ph  ->  ( X  .+  ( N `  ( N `  Y ) ) )  =  ( X  .+  Y ) )
1511, 14eqtrd 2475 1  |-  ( ph  ->  ( X  .-  ( N `  Y )
)  =  ( X 
.+  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756   ` cfv 5418  (class class class)co 6091   Basecbs 14174   +g cplusg 14238   Grpcgrp 15410   invgcminusg 15411   -gcsg 15413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-1st 6577  df-2nd 6578  df-0g 14380  df-mnd 15415  df-grp 15545  df-minusg 15546  df-sbg 15547
This theorem is referenced by:  issubg4  15700  isnsg3  15715  lsmelvalm  16150  ablsub2inv  16300  ablsubsub4  16308  istgp2  19662  nmtri  20217  baerlem5amN  35361  baerlem5abmN  35363
  Copyright terms: Public domain W3C validator