MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubid1 Structured version   Unicode version

Theorem grpsubid1 16325
Description: Subtraction of the identity from a group element. (Contributed by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
grpsubid.b  |-  B  =  ( Base `  G
)
grpsubid.o  |-  .0.  =  ( 0g `  G )
grpsubid.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grpsubid1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .-  .0.  )  =  X )

Proof of Theorem grpsubid1
StepHypRef Expression
1 id 22 . . 3  |-  ( X  e.  B  ->  X  e.  B )
2 grpsubid.b . . . 4  |-  B  =  ( Base `  G
)
3 grpsubid.o . . . 4  |-  .0.  =  ( 0g `  G )
42, 3grpidcl 16280 . . 3  |-  ( G  e.  Grp  ->  .0.  e.  B )
5 eqid 2454 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
6 eqid 2454 . . . 4  |-  ( invg `  G )  =  ( invg `  G )
7 grpsubid.m . . . 4  |-  .-  =  ( -g `  G )
82, 5, 6, 7grpsubval 16295 . . 3  |-  ( ( X  e.  B  /\  .0.  e.  B )  -> 
( X  .-  .0.  )  =  ( X
( +g  `  G ) ( ( invg `  G ) `  .0.  ) ) )
91, 4, 8syl2anr 476 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .-  .0.  )  =  ( X
( +g  `  G ) ( ( invg `  G ) `  .0.  ) ) )
103, 6grpinvid 16303 . . . 4  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .0.  )  =  .0.  )
1110adantr 463 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( invg `  G ) `  .0.  )  =  .0.  )
1211oveq2d 6286 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X ( +g  `  G ) ( ( invg `  G
) `  .0.  )
)  =  ( X ( +g  `  G
)  .0.  ) )
132, 5, 3grprid 16283 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X ( +g  `  G )  .0.  )  =  X )
149, 12, 133eqtrd 2499 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .-  .0.  )  =  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   ` cfv 5570  (class class class)co 6270   Basecbs 14719   +g cplusg 14787   0gc0g 14932   Grpcgrp 16255   invgcminusg 16256   -gcsg 16257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-0g 14934  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-grp 16259  df-minusg 16260  df-sbg 16261
This theorem is referenced by:  odmod  16772  sylow3lem1  16849  telgsums  17220  dprdfeq0  17260  dprdfeq0OLD  17267  chp0mat  19517  tsmsxplem1  20824  tngnm  21334  ply1divex  22706  ply1remlem  22732  qqhcn  28209  lcfrlem33  37718
  Copyright terms: Public domain W3C validator