MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubf Structured version   Unicode version

Theorem grpsubf 15723
Description: Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
grpsubcl.b  |-  B  =  ( Base `  G
)
grpsubcl.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grpsubf  |-  ( G  e.  Grp  ->  .-  :
( B  X.  B
) --> B )

Proof of Theorem grpsubf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubcl.b . . . . . . 7  |-  B  =  ( Base `  G
)
2 eqid 2454 . . . . . . 7  |-  ( invg `  G )  =  ( invg `  G )
31, 2grpinvcl 15701 . . . . . 6  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( ( invg `  G ) `  y
)  e.  B )
433adant2 1007 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( ( invg `  G ) `  y
)  e.  B )
5 eqid 2454 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
61, 5grpcl 15669 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  ( ( invg `  G ) `  y
)  e.  B )  ->  ( x ( +g  `  G ) ( ( invg `  G ) `  y
) )  e.  B
)
74, 6syld3an3 1264 . . . 4  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) ( ( invg `  G
) `  y )
)  e.  B )
873expb 1189 . . 3  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) ( ( invg `  G ) `
 y ) )  e.  B )
98ralrimivva 2912 . 2  |-  ( G  e.  Grp  ->  A. x  e.  B  A. y  e.  B  ( x
( +g  `  G ) ( ( invg `  G ) `  y
) )  e.  B
)
10 grpsubcl.m . . . 4  |-  .-  =  ( -g `  G )
111, 5, 2, 10grpsubfval 15698 . . 3  |-  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  G ) ( ( invg `  G
) `  y )
) )
1211fmpt2 6750 . 2  |-  ( A. x  e.  B  A. y  e.  B  (
x ( +g  `  G
) ( ( invg `  G ) `
 y ) )  e.  B  <->  .-  : ( B  X.  B ) --> B )
139, 12sylib 196 1  |-  ( G  e.  Grp  ->  .-  :
( B  X.  B
) --> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758   A.wral 2798    X. cxp 4945   -->wf 5521   ` cfv 5525  (class class class)co 6199   Basecbs 14291   +g cplusg 14356   Grpcgrp 15528   invgcminusg 15529   -gcsg 15531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-1st 6686  df-2nd 6687  df-0g 14498  df-mnd 15533  df-grp 15663  df-minusg 15664  df-sbg 15665
This theorem is referenced by:  grpsubcl  15724  cnfldsub  17968  distgp  19801  indistgp  19802  clssubg  19810  tgphaus  19818  divstgplem  19822  nrmmetd  20298  isngp2  20320  isngp3  20321  ngpds  20326  ngptgp  20353  tngnm  20368  tngngp2  20369  rrxds  21028
  Copyright terms: Public domain W3C validator