MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubadd Structured version   Unicode version

Theorem grpsubadd 15593
Description: Relationship between group subtraction and addition. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpsubadd.b  |-  B  =  ( Base `  G
)
grpsubadd.p  |-  .+  =  ( +g  `  G )
grpsubadd.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grpsubadd  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  =  Z  <->  ( Z  .+  Y )  =  X ) )

Proof of Theorem grpsubadd
StepHypRef Expression
1 grpsubadd.b . . . . . . 7  |-  B  =  ( Base `  G
)
2 grpsubadd.p . . . . . . 7  |-  .+  =  ( +g  `  G )
3 eqid 2433 . . . . . . 7  |-  ( invg `  G )  =  ( invg `  G )
4 grpsubadd.m . . . . . . 7  |-  .-  =  ( -g `  G )
51, 2, 3, 4grpsubval 15561 . . . . . 6  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X 
.+  ( ( invg `  G ) `
 Y ) ) )
653adant3 1001 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( X  .-  Y
)  =  ( X 
.+  ( ( invg `  G ) `
 Y ) ) )
76adantl 463 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .-  Y )  =  ( X  .+  (
( invg `  G ) `  Y
) ) )
87eqeq1d 2441 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  =  Z  <->  ( X  .+  ( ( invg `  G ) `  Y
) )  =  Z ) )
9 simpl 454 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  G  e.  Grp )
10 simpr1 987 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
111, 3grpinvcl 15563 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( invg `  G ) `  Y
)  e.  B )
12113ad2antr2 1147 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( invg `  G ) `  Y
)  e.  B )
131, 2grpcl 15531 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  ( ( invg `  G ) `  Y
)  e.  B )  ->  ( X  .+  ( ( invg `  G ) `  Y
) )  e.  B
)
149, 10, 12, 13syl3anc 1211 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .+  ( ( invg `  G ) `
 Y ) )  e.  B )
15 simpr3 989 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
16 simpr2 988 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
171, 2grprcan 15551 . . . 4  |-  ( ( G  e.  Grp  /\  ( ( X  .+  ( ( invg `  G ) `  Y
) )  e.  B  /\  Z  e.  B  /\  Y  e.  B
) )  ->  (
( ( X  .+  ( ( invg `  G ) `  Y
) )  .+  Y
)  =  ( Z 
.+  Y )  <->  ( X  .+  ( ( invg `  G ) `  Y
) )  =  Z ) )
189, 14, 15, 16, 17syl13anc 1213 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( X  .+  ( ( invg `  G ) `  Y
) )  .+  Y
)  =  ( Z 
.+  Y )  <->  ( X  .+  ( ( invg `  G ) `  Y
) )  =  Z ) )
191, 2grpass 15532 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  ( ( invg `  G ) `  Y
)  e.  B  /\  Y  e.  B )
)  ->  ( ( X  .+  ( ( invg `  G ) `
 Y ) ) 
.+  Y )  =  ( X  .+  (
( ( invg `  G ) `  Y
)  .+  Y )
) )
209, 10, 12, 16, 19syl13anc 1213 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  (
( invg `  G ) `  Y
) )  .+  Y
)  =  ( X 
.+  ( ( ( invg `  G
) `  Y )  .+  Y ) ) )
21 eqid 2433 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
221, 2, 21, 3grplinv 15564 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( ( invg `  G ) `
 Y )  .+  Y )  =  ( 0g `  G ) )
23223ad2antr2 1147 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( invg `  G ) `  Y
)  .+  Y )  =  ( 0g `  G ) )
2423oveq2d 6096 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .+  ( ( ( invg `  G
) `  Y )  .+  Y ) )  =  ( X  .+  ( 0g `  G ) ) )
251, 2, 21grprid 15549 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( 0g `  G ) )  =  X )
26253ad2antr1 1146 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .+  ( 0g `  G ) )  =  X )
2720, 24, 263eqtrd 2469 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  (
( invg `  G ) `  Y
) )  .+  Y
)  =  X )
2827eqeq1d 2441 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( X  .+  ( ( invg `  G ) `  Y
) )  .+  Y
)  =  ( Z 
.+  Y )  <->  X  =  ( Z  .+  Y ) ) )
298, 18, 283bitr2d 281 . 2  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  =  Z  <->  X  =  ( Z  .+  Y ) ) )
30 eqcom 2435 . 2  |-  ( X  =  ( Z  .+  Y )  <->  ( Z  .+  Y )  =  X )
3129, 30syl6bb 261 1  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  =  Z  <->  ( Z  .+  Y )  =  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   ` cfv 5406  (class class class)co 6080   Basecbs 14157   +g cplusg 14221   0gc0g 14361   Grpcgrp 15393   invgcminusg 15394   -gcsg 15396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-id 4623  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-1st 6566  df-2nd 6567  df-0g 14363  df-mnd 15398  df-grp 15525  df-minusg 15526  df-sbg 15527
This theorem is referenced by:  grpsubsub4  15598  conjghm  15757  conjnmzb  15761  sylow3lem2  16107  ablsubadd  16281  pgpfac1lem2  16550  pgpfac1lem4  16553  lspexch  17132  coe1subfv  17618  ipsubdir  17913  ipsubdi  17914  zlmodzxzsub  30592
  Copyright terms: Public domain W3C validator