MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubadd Structured version   Unicode version

Theorem grpsubadd 16328
Description: Relationship between group subtraction and addition. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpsubadd.b  |-  B  =  ( Base `  G
)
grpsubadd.p  |-  .+  =  ( +g  `  G )
grpsubadd.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grpsubadd  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  =  Z  <->  ( Z  .+  Y )  =  X ) )

Proof of Theorem grpsubadd
StepHypRef Expression
1 grpsubadd.b . . . . . . 7  |-  B  =  ( Base `  G
)
2 grpsubadd.p . . . . . . 7  |-  .+  =  ( +g  `  G )
3 eqid 2454 . . . . . . 7  |-  ( invg `  G )  =  ( invg `  G )
4 grpsubadd.m . . . . . . 7  |-  .-  =  ( -g `  G )
51, 2, 3, 4grpsubval 16295 . . . . . 6  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X 
.+  ( ( invg `  G ) `
 Y ) ) )
653adant3 1014 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( X  .-  Y
)  =  ( X 
.+  ( ( invg `  G ) `
 Y ) ) )
76adantl 464 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .-  Y )  =  ( X  .+  (
( invg `  G ) `  Y
) ) )
87eqeq1d 2456 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  =  Z  <->  ( X  .+  ( ( invg `  G ) `  Y
) )  =  Z ) )
9 simpl 455 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  G  e.  Grp )
10 simpr1 1000 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
111, 3grpinvcl 16297 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( invg `  G ) `  Y
)  e.  B )
12113ad2antr2 1160 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( invg `  G ) `  Y
)  e.  B )
131, 2grpcl 16265 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  ( ( invg `  G ) `  Y
)  e.  B )  ->  ( X  .+  ( ( invg `  G ) `  Y
) )  e.  B
)
149, 10, 12, 13syl3anc 1226 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .+  ( ( invg `  G ) `
 Y ) )  e.  B )
15 simpr3 1002 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
16 simpr2 1001 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
171, 2grprcan 16285 . . . 4  |-  ( ( G  e.  Grp  /\  ( ( X  .+  ( ( invg `  G ) `  Y
) )  e.  B  /\  Z  e.  B  /\  Y  e.  B
) )  ->  (
( ( X  .+  ( ( invg `  G ) `  Y
) )  .+  Y
)  =  ( Z 
.+  Y )  <->  ( X  .+  ( ( invg `  G ) `  Y
) )  =  Z ) )
189, 14, 15, 16, 17syl13anc 1228 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( X  .+  ( ( invg `  G ) `  Y
) )  .+  Y
)  =  ( Z 
.+  Y )  <->  ( X  .+  ( ( invg `  G ) `  Y
) )  =  Z ) )
191, 2grpass 16266 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  ( ( invg `  G ) `  Y
)  e.  B  /\  Y  e.  B )
)  ->  ( ( X  .+  ( ( invg `  G ) `
 Y ) ) 
.+  Y )  =  ( X  .+  (
( ( invg `  G ) `  Y
)  .+  Y )
) )
209, 10, 12, 16, 19syl13anc 1228 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  (
( invg `  G ) `  Y
) )  .+  Y
)  =  ( X 
.+  ( ( ( invg `  G
) `  Y )  .+  Y ) ) )
21 eqid 2454 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
221, 2, 21, 3grplinv 16298 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( ( invg `  G ) `
 Y )  .+  Y )  =  ( 0g `  G ) )
23223ad2antr2 1160 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( invg `  G ) `  Y
)  .+  Y )  =  ( 0g `  G ) )
2423oveq2d 6286 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .+  ( ( ( invg `  G
) `  Y )  .+  Y ) )  =  ( X  .+  ( 0g `  G ) ) )
251, 2, 21grprid 16283 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( 0g `  G ) )  =  X )
26253ad2antr1 1159 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .+  ( 0g `  G ) )  =  X )
2720, 24, 263eqtrd 2499 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  (
( invg `  G ) `  Y
) )  .+  Y
)  =  X )
2827eqeq1d 2456 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( X  .+  ( ( invg `  G ) `  Y
) )  .+  Y
)  =  ( Z 
.+  Y )  <->  X  =  ( Z  .+  Y ) ) )
298, 18, 283bitr2d 281 . 2  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  =  Z  <->  X  =  ( Z  .+  Y ) ) )
30 eqcom 2463 . 2  |-  ( X  =  ( Z  .+  Y )  <->  ( Z  .+  Y )  =  X )
3129, 30syl6bb 261 1  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  =  Z  <->  ( Z  .+  Y )  =  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   ` cfv 5570  (class class class)co 6270   Basecbs 14719   +g cplusg 14787   0gc0g 14932   Grpcgrp 16255   invgcminusg 16256   -gcsg 16257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-0g 14934  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-grp 16259  df-minusg 16260  df-sbg 16261
This theorem is referenced by:  grpsubsub4  16333  conjghm  16499  conjnmzb  16503  sylow3lem2  16850  ablsubadd  17024  pgpfac1lem2  17324  pgpfac1lem4  17327  lspexch  17973  coe1subfv  18505  ipsubdir  18853  ipsubdi  18854  zlmodzxzsub  33222
  Copyright terms: Public domain W3C validator