MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grppropd Structured version   Unicode version

Theorem grppropd 15667
Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grppropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
grppropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
grppropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
Assertion
Ref Expression
grppropd  |-  ( ph  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
Distinct variable groups:    x, y, B    x, K, y    x, L, y    ph, x, y

Proof of Theorem grppropd
StepHypRef Expression
1 grppropd.1 . . . 4  |-  ( ph  ->  B  =  ( Base `  K ) )
2 grppropd.2 . . . 4  |-  ( ph  ->  B  =  ( Base `  L ) )
3 grppropd.3 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
41, 2, 3mndpropd 15557 . . 3  |-  ( ph  ->  ( K  e.  Mnd  <->  L  e.  Mnd ) )
51, 2, 3grpidpropd 15558 . . . . . . . . 9  |-  ( ph  ->  ( 0g `  K
)  =  ( 0g
`  L ) )
65adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( 0g `  K
)  =  ( 0g
`  L ) )
73, 6eqeq12d 2473 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( x ( +g  `  K ) y )  =  ( 0g `  K )  <-> 
( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
87anass1rs 805 . . . . . 6  |-  ( ( ( ph  /\  y  e.  B )  /\  x  e.  B )  ->  (
( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  ( x
( +g  `  L ) y )  =  ( 0g `  L ) ) )
98rexbidva 2852 . . . . 5  |-  ( (
ph  /\  y  e.  B )  ->  ( E. x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  E. x  e.  B  ( x
( +g  `  L ) y )  =  ( 0g `  L ) ) )
109ralbidva 2839 . . . 4  |-  ( ph  ->  ( A. y  e.  B  E. x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  A. y  e.  B  E. x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
111rexeqdv 3023 . . . . 5  |-  ( ph  ->  ( E. x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  E. x  e.  ( Base `  K ) ( x ( +g  `  K
) y )  =  ( 0g `  K
) ) )
121, 11raleqbidv 3030 . . . 4  |-  ( ph  ->  ( A. y  e.  B  E. x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  A. y  e.  ( Base `  K ) E. x  e.  ( Base `  K ) ( x ( +g  `  K
) y )  =  ( 0g `  K
) ) )
132rexeqdv 3023 . . . . 5  |-  ( ph  ->  ( E. x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L )  <->  E. x  e.  ( Base `  L ) ( x ( +g  `  L
) y )  =  ( 0g `  L
) ) )
142, 13raleqbidv 3030 . . . 4  |-  ( ph  ->  ( A. y  e.  B  E. x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L )  <->  A. y  e.  ( Base `  L ) E. x  e.  ( Base `  L ) ( x ( +g  `  L
) y )  =  ( 0g `  L
) ) )
1510, 12, 143bitr3d 283 . . 3  |-  ( ph  ->  ( A. y  e.  ( Base `  K
) E. x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  A. y  e.  ( Base `  L ) E. x  e.  ( Base `  L ) ( x ( +g  `  L
) y )  =  ( 0g `  L
) ) )
164, 15anbi12d 710 . 2  |-  ( ph  ->  ( ( K  e. 
Mnd  /\  A. y  e.  ( Base `  K
) E. x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K ) )  <->  ( L  e. 
Mnd  /\  A. y  e.  ( Base `  L
) E. x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
17 eqid 2451 . . 3  |-  ( Base `  K )  =  (
Base `  K )
18 eqid 2451 . . 3  |-  ( +g  `  K )  =  ( +g  `  K )
19 eqid 2451 . . 3  |-  ( 0g
`  K )  =  ( 0g `  K
)
2017, 18, 19isgrp 15660 . 2  |-  ( K  e.  Grp  <->  ( K  e.  Mnd  /\  A. y  e.  ( Base `  K
) E. x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) )
21 eqid 2451 . . 3  |-  ( Base `  L )  =  (
Base `  L )
22 eqid 2451 . . 3  |-  ( +g  `  L )  =  ( +g  `  L )
23 eqid 2451 . . 3  |-  ( 0g
`  L )  =  ( 0g `  L
)
2421, 22, 23isgrp 15660 . 2  |-  ( L  e.  Grp  <->  ( L  e.  Mnd  /\  A. y  e.  ( Base `  L
) E. x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
2516, 20, 243bitr4g 288 1  |-  ( ph  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795   E.wrex 2796   ` cfv 5519  (class class class)co 6193   Basecbs 14285   +g cplusg 14349   0gc0g 14489   Mndcmnd 15520   Grpcgrp 15521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3073  df-sbc 3288  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-iota 5482  df-fun 5521  df-fv 5527  df-ov 6196  df-0g 14491  df-mnd 15526  df-grp 15656
This theorem is referenced by:  grpprop  15668  ghmpropd  15895  oppggrpb  15984  ablpropd  16400  rngpropd  16791  lmodprop2d  17122  sralmod  17383  nmpropd2  20312  ngppropd  20348  tngngp2  20363  zhmnrg  26534
  Copyright terms: Public domain W3C validator