MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grppncan Structured version   Unicode version

Theorem grppncan 15738
Description: Cancellation law for subtraction (pncan 9730 analog). (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
grpsubadd.b  |-  B  =  ( Base `  G
)
grpsubadd.p  |-  .+  =  ( +g  `  G )
grpsubadd.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grppncan  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  Y )  .-  Y
)  =  X )

Proof of Theorem grppncan
StepHypRef Expression
1 simp1 988 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  G  e.  Grp )
2 simp2 989 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
3 simp3 990 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
4 grpsubadd.b . . . 4  |-  B  =  ( Base `  G
)
5 grpsubadd.p . . . 4  |-  .+  =  ( +g  `  G )
6 grpsubadd.m . . . 4  |-  .-  =  ( -g `  G )
74, 5, 6grpaddsubass 15737 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  e.  B
) )  ->  (
( X  .+  Y
)  .-  Y )  =  ( X  .+  ( Y  .-  Y ) ) )
81, 2, 3, 3, 7syl13anc 1221 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  Y )  .-  Y
)  =  ( X 
.+  ( Y  .-  Y ) ) )
9 eqid 2454 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
104, 9, 6grpsubid 15732 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( Y  .-  Y
)  =  ( 0g
`  G ) )
1110oveq2d 6219 . . 3  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( X  .+  ( Y  .-  Y ) )  =  ( X  .+  ( 0g `  G ) ) )
12113adant2 1007 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( Y  .-  Y ) )  =  ( X  .+  ( 0g `  G ) ) )
134, 5, 9grprid 15691 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( 0g `  G ) )  =  X )
14133adant3 1008 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( 0g `  G ) )  =  X )
158, 12, 143eqtrd 2499 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  Y )  .-  Y
)  =  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   ` cfv 5529  (class class class)co 6203   Basecbs 14295   +g cplusg 14360   0gc0g 14500   Grpcgrp 15532   -gcsg 15535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-0g 14502  df-mnd 15537  df-grp 15667  df-minusg 15668  df-sbg 15669
This theorem is referenced by:  grpnpcan  15739  grppnpcan2  15741  ssnmz  15845  conjnmz  15902  cntrsubgnsg  15980  sylow2blem3  16245  sylow3lem2  16251  subgdisj1  16312  pgpfac1lem3  16703  lmodvpncan  17124  opnsubg  19813  lfl0  33068
  Copyright terms: Public domain W3C validator