MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grppncan Structured version   Visualization version   Unicode version

Theorem grppncan 16745
Description: Cancellation law for subtraction (pncan 9881 analog). (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
grpsubadd.b  |-  B  =  ( Base `  G
)
grpsubadd.p  |-  .+  =  ( +g  `  G )
grpsubadd.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grppncan  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  Y )  .-  Y
)  =  X )

Proof of Theorem grppncan
StepHypRef Expression
1 simp1 1008 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  G  e.  Grp )
2 simp2 1009 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
3 simp3 1010 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
4 grpsubadd.b . . . 4  |-  B  =  ( Base `  G
)
5 grpsubadd.p . . . 4  |-  .+  =  ( +g  `  G )
6 grpsubadd.m . . . 4  |-  .-  =  ( -g `  G )
74, 5, 6grpaddsubass 16744 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  e.  B
) )  ->  (
( X  .+  Y
)  .-  Y )  =  ( X  .+  ( Y  .-  Y ) ) )
81, 2, 3, 3, 7syl13anc 1270 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  Y )  .-  Y
)  =  ( X 
.+  ( Y  .-  Y ) ) )
9 eqid 2451 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
104, 9, 6grpsubid 16738 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( Y  .-  Y
)  =  ( 0g
`  G ) )
1110oveq2d 6306 . . 3  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( X  .+  ( Y  .-  Y ) )  =  ( X  .+  ( 0g `  G ) ) )
12113adant2 1027 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( Y  .-  Y ) )  =  ( X  .+  ( 0g `  G ) ) )
134, 5, 9grprid 16697 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( 0g `  G ) )  =  X )
14133adant3 1028 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( 0g `  G ) )  =  X )
158, 12, 143eqtrd 2489 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  Y )  .-  Y
)  =  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   ` cfv 5582  (class class class)co 6290   Basecbs 15121   +g cplusg 15190   0gc0g 15338   Grpcgrp 16669   -gcsg 16671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-1st 6793  df-2nd 6794  df-0g 15340  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-grp 16673  df-minusg 16674  df-sbg 16675
This theorem is referenced by:  grpnpcan  16746  grppnpcan2  16748  ssnmz  16859  conjnmz  16916  cntrsubgnsg  16994  sylow2blem3  17274  sylow3lem2  17280  subgdisj1  17341  pgpfac1lem3  17710  lmodvpncan  18141  opnsubg  21122  lfl0  32631
  Copyright terms: Public domain W3C validator