MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grporcan Structured version   Unicode version

Theorem grporcan 25421
Description: Right cancellation law for groups. (Contributed by NM, 26-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grprcan.1  |-  X  =  ran  G
Assertion
Ref Expression
grporcan  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G C )  =  ( B G C )  <->  A  =  B
) )

Proof of Theorem grporcan
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 grprcan.1 . . . . . . . 8  |-  X  =  ran  G
2 eqid 2454 . . . . . . . 8  |-  (GId `  G )  =  (GId
`  G )
31, 2grpoidinv2 25418 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  (
( ( (GId `  G ) G C )  =  C  /\  ( C G (GId `  G ) )  =  C )  /\  E. y  e.  X  (
( y G C )  =  (GId `  G )  /\  ( C G y )  =  (GId `  G )
) ) )
4 simpr 459 . . . . . . . . 9  |-  ( ( ( y G C )  =  (GId `  G )  /\  ( C G y )  =  (GId `  G )
)  ->  ( C G y )  =  (GId `  G )
)
54reximi 2922 . . . . . . . 8  |-  ( E. y  e.  X  ( ( y G C )  =  (GId `  G )  /\  ( C G y )  =  (GId `  G )
)  ->  E. y  e.  X  ( C G y )  =  (GId `  G )
)
65adantl 464 . . . . . . 7  |-  ( ( ( ( (GId `  G ) G C )  =  C  /\  ( C G (GId `  G ) )  =  C )  /\  E. y  e.  X  (
( y G C )  =  (GId `  G )  /\  ( C G y )  =  (GId `  G )
) )  ->  E. y  e.  X  ( C G y )  =  (GId `  G )
)
73, 6syl 16 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  E. y  e.  X  ( C G y )  =  (GId `  G )
)
87ad2ant2rl 746 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  ->  E. y  e.  X  ( C G y )  =  (GId `  G
) )
9 oveq1 6277 . . . . . . . . . . . 12  |-  ( ( A G C )  =  ( B G C )  ->  (
( A G C ) G y )  =  ( ( B G C ) G y ) )
109ad2antll 726 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( A G C )  =  ( B G C ) ) )  ->  ( ( A G C ) G y )  =  ( ( B G C ) G y ) )
111grpoass 25403 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X  /\  y  e.  X )
)  ->  ( ( A G C ) G y )  =  ( A G ( C G y ) ) )
12113anassrs 1216 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  C  e.  X )  /\  y  e.  X )  ->  (
( A G C ) G y )  =  ( A G ( C G y ) ) )
1312adantlrl 717 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  y  e.  X )  ->  ( ( A G C ) G y )  =  ( A G ( C G y ) ) )
1413adantrr 714 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( A G C )  =  ( B G C ) ) )  ->  ( ( A G C ) G y )  =  ( A G ( C G y ) ) )
151grpoass 25403 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X  /\  y  e.  X )
)  ->  ( ( B G C ) G y )  =  ( B G ( C G y ) ) )
16153exp2 1212 . . . . . . . . . . . . . 14  |-  ( G  e.  GrpOp  ->  ( B  e.  X  ->  ( C  e.  X  ->  (
y  e.  X  -> 
( ( B G C ) G y )  =  ( B G ( C G y ) ) ) ) ) )
1716imp42 592 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X
) )  /\  y  e.  X )  ->  (
( B G C ) G y )  =  ( B G ( C G y ) ) )
1817adantllr 716 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  y  e.  X )  ->  ( ( B G C ) G y )  =  ( B G ( C G y ) ) )
1918adantrr 714 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( A G C )  =  ( B G C ) ) )  ->  ( ( B G C ) G y )  =  ( B G ( C G y ) ) )
2010, 14, 193eqtr3d 2503 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( A G C )  =  ( B G C ) ) )  ->  ( A G ( C G y ) )  =  ( B G ( C G y ) ) )
2120adantrrl 721 . . . . . . . . 9  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( A G ( C G y ) )  =  ( B G ( C G y ) ) )
22 oveq2 6278 . . . . . . . . . . 11  |-  ( ( C G y )  =  (GId `  G
)  ->  ( A G ( C G y ) )  =  ( A G (GId
`  G ) ) )
2322ad2antrl 725 . . . . . . . . . 10  |-  ( ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) )  ->  ( A G ( C G y ) )  =  ( A G (GId `  G ) ) )
2423adantl 464 . . . . . . . . 9  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( A G ( C G y ) )  =  ( A G (GId
`  G ) ) )
25 oveq2 6278 . . . . . . . . . . 11  |-  ( ( C G y )  =  (GId `  G
)  ->  ( B G ( C G y ) )  =  ( B G (GId
`  G ) ) )
2625ad2antrl 725 . . . . . . . . . 10  |-  ( ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) )  ->  ( B G ( C G y ) )  =  ( B G (GId `  G ) ) )
2726adantl 464 . . . . . . . . 9  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( B G ( C G y ) )  =  ( B G (GId
`  G ) ) )
2821, 24, 273eqtr3d 2503 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( A G (GId `  G )
)  =  ( B G (GId `  G
) ) )
291, 2grporid 25420 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A G (GId `  G
) )  =  A )
3029ad2antrr 723 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( A G (GId `  G )
)  =  A )
311, 2grporid 25420 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  ( B G (GId `  G
) )  =  B )
3231ad2ant2r 744 . . . . . . . . 9  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( B G (GId
`  G ) )  =  B )
3332adantr 463 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( B G (GId `  G )
)  =  B )
3428, 30, 333eqtr3d 2503 . . . . . . 7  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  A  =  B )
3534exp45 612 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( y  e.  X  ->  ( ( C G y )  =  (GId
`  G )  -> 
( ( A G C )  =  ( B G C )  ->  A  =  B ) ) ) )
3635rexlimdv 2944 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( E. y  e.  X  ( C G y )  =  (GId
`  G )  -> 
( ( A G C )  =  ( B G C )  ->  A  =  B ) ) )
378, 36mpd 15 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( ( A G C )  =  ( B G C )  ->  A  =  B ) )
38 oveq1 6277 . . . 4  |-  ( A  =  B  ->  ( A G C )  =  ( B G C ) )
3937, 38impbid1 203 . . 3  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( ( A G C )  =  ( B G C )  <-> 
A  =  B ) )
4039exp43 610 . 2  |-  ( G  e.  GrpOp  ->  ( A  e.  X  ->  ( B  e.  X  ->  ( C  e.  X  ->  ( ( A G C )  =  ( B G C )  <->  A  =  B ) ) ) ) )
41403imp2 1209 1  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G C )  =  ( B G C )  <->  A  =  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   E.wrex 2805   ran crn 4989   ` cfv 5570  (class class class)co 6270   GrpOpcgr 25386  GIdcgi 25387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-fo 5576  df-fv 5578  df-riota 6232  df-ov 6273  df-grpo 25391  df-gid 25392
This theorem is referenced by:  grpoinveu  25422  grpoid  25423  grpodiveq  25456  rngorcan  25596  rngorz  25602  vcrcan  25655  nvrcan  25716  ghomdiv  30586
  Copyright terms: Public domain W3C validator