MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grporcan Structured version   Unicode version

Theorem grporcan 24915
Description: Right cancellation law for groups. (Contributed by NM, 26-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grprcan.1  |-  X  =  ran  G
Assertion
Ref Expression
grporcan  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G C )  =  ( B G C )  <->  A  =  B
) )

Proof of Theorem grporcan
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 grprcan.1 . . . . . . . 8  |-  X  =  ran  G
2 eqid 2467 . . . . . . . 8  |-  (GId `  G )  =  (GId
`  G )
31, 2grpoidinv2 24912 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  (
( ( (GId `  G ) G C )  =  C  /\  ( C G (GId `  G ) )  =  C )  /\  E. y  e.  X  (
( y G C )  =  (GId `  G )  /\  ( C G y )  =  (GId `  G )
) ) )
4 simpr 461 . . . . . . . . 9  |-  ( ( ( y G C )  =  (GId `  G )  /\  ( C G y )  =  (GId `  G )
)  ->  ( C G y )  =  (GId `  G )
)
54reximi 2932 . . . . . . . 8  |-  ( E. y  e.  X  ( ( y G C )  =  (GId `  G )  /\  ( C G y )  =  (GId `  G )
)  ->  E. y  e.  X  ( C G y )  =  (GId `  G )
)
65adantl 466 . . . . . . 7  |-  ( ( ( ( (GId `  G ) G C )  =  C  /\  ( C G (GId `  G ) )  =  C )  /\  E. y  e.  X  (
( y G C )  =  (GId `  G )  /\  ( C G y )  =  (GId `  G )
) )  ->  E. y  e.  X  ( C G y )  =  (GId `  G )
)
73, 6syl 16 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  E. y  e.  X  ( C G y )  =  (GId `  G )
)
87ad2ant2rl 748 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  ->  E. y  e.  X  ( C G y )  =  (GId `  G
) )
9 oveq1 6290 . . . . . . . . . . . 12  |-  ( ( A G C )  =  ( B G C )  ->  (
( A G C ) G y )  =  ( ( B G C ) G y ) )
109ad2antll 728 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( A G C )  =  ( B G C ) ) )  ->  ( ( A G C ) G y )  =  ( ( B G C ) G y ) )
111grpoass 24897 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X  /\  y  e.  X )
)  ->  ( ( A G C ) G y )  =  ( A G ( C G y ) ) )
12113anassrs 1218 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  C  e.  X )  /\  y  e.  X )  ->  (
( A G C ) G y )  =  ( A G ( C G y ) ) )
1312adantlrl 719 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  y  e.  X )  ->  ( ( A G C ) G y )  =  ( A G ( C G y ) ) )
1413adantrr 716 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( A G C )  =  ( B G C ) ) )  ->  ( ( A G C ) G y )  =  ( A G ( C G y ) ) )
151grpoass 24897 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X  /\  y  e.  X )
)  ->  ( ( B G C ) G y )  =  ( B G ( C G y ) ) )
16153exp2 1214 . . . . . . . . . . . . . 14  |-  ( G  e.  GrpOp  ->  ( B  e.  X  ->  ( C  e.  X  ->  (
y  e.  X  -> 
( ( B G C ) G y )  =  ( B G ( C G y ) ) ) ) ) )
1716imp42 594 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X
) )  /\  y  e.  X )  ->  (
( B G C ) G y )  =  ( B G ( C G y ) ) )
1817adantllr 718 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  y  e.  X )  ->  ( ( B G C ) G y )  =  ( B G ( C G y ) ) )
1918adantrr 716 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( A G C )  =  ( B G C ) ) )  ->  ( ( B G C ) G y )  =  ( B G ( C G y ) ) )
2010, 14, 193eqtr3d 2516 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( A G C )  =  ( B G C ) ) )  ->  ( A G ( C G y ) )  =  ( B G ( C G y ) ) )
2120adantrrl 723 . . . . . . . . 9  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( A G ( C G y ) )  =  ( B G ( C G y ) ) )
22 oveq2 6291 . . . . . . . . . . 11  |-  ( ( C G y )  =  (GId `  G
)  ->  ( A G ( C G y ) )  =  ( A G (GId
`  G ) ) )
2322ad2antrl 727 . . . . . . . . . 10  |-  ( ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) )  ->  ( A G ( C G y ) )  =  ( A G (GId `  G ) ) )
2423adantl 466 . . . . . . . . 9  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( A G ( C G y ) )  =  ( A G (GId
`  G ) ) )
25 oveq2 6291 . . . . . . . . . . 11  |-  ( ( C G y )  =  (GId `  G
)  ->  ( B G ( C G y ) )  =  ( B G (GId
`  G ) ) )
2625ad2antrl 727 . . . . . . . . . 10  |-  ( ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) )  ->  ( B G ( C G y ) )  =  ( B G (GId `  G ) ) )
2726adantl 466 . . . . . . . . 9  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( B G ( C G y ) )  =  ( B G (GId
`  G ) ) )
2821, 24, 273eqtr3d 2516 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( A G (GId `  G )
)  =  ( B G (GId `  G
) ) )
291, 2grporid 24914 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A G (GId `  G
) )  =  A )
3029ad2antrr 725 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( A G (GId `  G )
)  =  A )
311, 2grporid 24914 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  ( B G (GId `  G
) )  =  B )
3231ad2ant2r 746 . . . . . . . . 9  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( B G (GId
`  G ) )  =  B )
3332adantr 465 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( B G (GId `  G )
)  =  B )
3428, 30, 333eqtr3d 2516 . . . . . . 7  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  A  =  B )
3534exp45 614 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( y  e.  X  ->  ( ( C G y )  =  (GId
`  G )  -> 
( ( A G C )  =  ( B G C )  ->  A  =  B ) ) ) )
3635rexlimdv 2953 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( E. y  e.  X  ( C G y )  =  (GId
`  G )  -> 
( ( A G C )  =  ( B G C )  ->  A  =  B ) ) )
378, 36mpd 15 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( ( A G C )  =  ( B G C )  ->  A  =  B ) )
38 oveq1 6290 . . . 4  |-  ( A  =  B  ->  ( A G C )  =  ( B G C ) )
3937, 38impbid1 203 . . 3  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( ( A G C )  =  ( B G C )  <-> 
A  =  B ) )
4039exp43 612 . 2  |-  ( G  e.  GrpOp  ->  ( A  e.  X  ->  ( B  e.  X  ->  ( C  e.  X  ->  ( ( A G C )  =  ( B G C )  <->  A  =  B ) ) ) ) )
41403imp2 1211 1  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G C )  =  ( B G C )  <->  A  =  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   E.wrex 2815   ran crn 5000   ` cfv 5587  (class class class)co 6283   GrpOpcgr 24880  GIdcgi 24881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686  ax-un 6575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-fo 5593  df-fv 5595  df-riota 6244  df-ov 6286  df-grpo 24885  df-gid 24886
This theorem is referenced by:  grpoinveu  24916  grpoid  24917  grpodiveq  24950  rngorcan  25090  rngorz  25096  vcrcan  25149  nvrcan  25210  ghomdiv  29965
  Copyright terms: Public domain W3C validator