MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpolcan Structured version   Unicode version

Theorem grpolcan 25953
Description: Left cancellation law for groups. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grplcan.1  |-  X  =  ran  G
Assertion
Ref Expression
grpolcan  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( C G A )  =  ( C G B )  <->  A  =  B
) )

Proof of Theorem grpolcan
StepHypRef Expression
1 oveq2 6311 . . . . . 6  |-  ( ( C G A )  =  ( C G B )  ->  (
( ( inv `  G
) `  C ) G ( C G A ) )  =  ( ( ( inv `  G ) `  C
) G ( C G B ) ) )
21adantl 468 . . . . 5  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( C G A )  =  ( C G B ) )  -> 
( ( ( inv `  G ) `  C
) G ( C G A ) )  =  ( ( ( inv `  G ) `
 C ) G ( C G B ) ) )
3 grplcan.1 . . . . . . . . . . 11  |-  X  =  ran  G
4 eqid 2423 . . . . . . . . . . 11  |-  (GId `  G )  =  (GId
`  G )
5 eqid 2423 . . . . . . . . . . 11  |-  ( inv `  G )  =  ( inv `  G )
63, 4, 5grpolinv 25948 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  (
( ( inv `  G
) `  C ) G C )  =  (GId
`  G ) )
76adantlr 720 . . . . . . . . 9  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  C  e.  X
)  ->  ( (
( inv `  G
) `  C ) G C )  =  (GId
`  G ) )
87oveq1d 6318 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  C  e.  X
)  ->  ( (
( ( inv `  G
) `  C ) G C ) G A )  =  ( (GId
`  G ) G A ) )
93, 5grpoinvcl 25946 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  (
( inv `  G
) `  C )  e.  X )
109adantrl 721 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X )
)  ->  ( ( inv `  G ) `  C )  e.  X
)
11 simprr 765 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X )
)  ->  C  e.  X )
12 simprl 763 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X )
)  ->  A  e.  X )
1310, 11, 123jca 1186 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X )
)  ->  ( (
( inv `  G
) `  C )  e.  X  /\  C  e.  X  /\  A  e.  X ) )
143grpoass 25923 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  (
( ( inv `  G
) `  C )  e.  X  /\  C  e.  X  /\  A  e.  X ) )  -> 
( ( ( ( inv `  G ) `
 C ) G C ) G A )  =  ( ( ( inv `  G
) `  C ) G ( C G A ) ) )
1513, 14syldan 473 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X )
)  ->  ( (
( ( inv `  G
) `  C ) G C ) G A )  =  ( ( ( inv `  G
) `  C ) G ( C G A ) ) )
1615anassrs 653 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  C  e.  X
)  ->  ( (
( ( inv `  G
) `  C ) G C ) G A )  =  ( ( ( inv `  G
) `  C ) G ( C G A ) ) )
173, 4grpolid 25939 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
(GId `  G ) G A )  =  A )
1817adantr 467 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  C  e.  X
)  ->  ( (GId `  G ) G A )  =  A )
198, 16, 183eqtr3d 2472 . . . . . . 7  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  C  e.  X
)  ->  ( (
( inv `  G
) `  C ) G ( C G A ) )  =  A )
2019adantrl 721 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( ( ( inv `  G ) `  C
) G ( C G A ) )  =  A )
2120adantr 467 . . . . 5  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( C G A )  =  ( C G B ) )  -> 
( ( ( inv `  G ) `  C
) G ( C G A ) )  =  A )
226adantrl 721 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( (
( inv `  G
) `  C ) G C )  =  (GId
`  G ) )
2322oveq1d 6318 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( (
( ( inv `  G
) `  C ) G C ) G B )  =  ( (GId
`  G ) G B ) )
249adantrl 721 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( ( inv `  G ) `  C )  e.  X
)
25 simprr 765 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  C  e.  X )
26 simprl 763 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  B  e.  X )
2724, 25, 263jca 1186 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( (
( inv `  G
) `  C )  e.  X  /\  C  e.  X  /\  B  e.  X ) )
283grpoass 25923 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  (
( ( inv `  G
) `  C )  e.  X  /\  C  e.  X  /\  B  e.  X ) )  -> 
( ( ( ( inv `  G ) `
 C ) G C ) G B )  =  ( ( ( inv `  G
) `  C ) G ( C G B ) ) )
2927, 28syldan 473 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( (
( ( inv `  G
) `  C ) G C ) G B )  =  ( ( ( inv `  G
) `  C ) G ( C G B ) ) )
303, 4grpolid 25939 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  (
(GId `  G ) G B )  =  B )
3130adantrr 722 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( (GId `  G ) G B )  =  B )
3223, 29, 313eqtr3d 2472 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( (
( inv `  G
) `  C ) G ( C G B ) )  =  B )
3332adantlr 720 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( ( ( inv `  G ) `  C
) G ( C G B ) )  =  B )
3433adantr 467 . . . . 5  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( C G A )  =  ( C G B ) )  -> 
( ( ( inv `  G ) `  C
) G ( C G B ) )  =  B )
352, 21, 343eqtr3d 2472 . . . 4  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( C G A )  =  ( C G B ) )  ->  A  =  B )
3635exp53 622 . . 3  |-  ( G  e.  GrpOp  ->  ( A  e.  X  ->  ( B  e.  X  ->  ( C  e.  X  ->  ( ( C G A )  =  ( C G B )  ->  A  =  B )
) ) ) )
37363imp2 1221 . 2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( C G A )  =  ( C G B )  ->  A  =  B ) )
38 oveq2 6311 . 2  |-  ( A  =  B  ->  ( C G A )  =  ( C G B ) )
3937, 38impbid1 207 1  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( C G A )  =  ( C G B )  <->  A  =  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869   ran crn 4852   ` cfv 5599  (class class class)co 6303   GrpOpcgr 25906  GIdcgi 25907   invcgn 25908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3763  df-if 3911  df-sn 3998  df-pr 4000  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-id 4766  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-grpo 25911  df-gid 25912  df-ginv 25913
This theorem is referenced by:  grpo2inv  25959  rngolcan  26117  rngolz  26121  vclcan  26176  nvlcan  26237
  Copyright terms: Public domain W3C validator