Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpokerinj Structured version   Unicode version

Theorem grpokerinj 29978
Description: A group homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
grpkerinj.1  |-  X  =  ran  G
grpkerinj.2  |-  W  =  (GId `  G )
grpkerinj.3  |-  Y  =  ran  H
grpkerinj.4  |-  U  =  (GId `  H )
Assertion
Ref Expression
grpokerinj  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( F : X -1-1-> Y  <->  ( `' F " { U } )  =  { W }
) )

Proof of Theorem grpokerinj
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpkerinj.2 . . . . . . . . 9  |-  W  =  (GId `  G )
2 grpkerinj.4 . . . . . . . . 9  |-  U  =  (GId `  H )
31, 2ghomid 25071 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( F `  W )  =  U )
43sneqd 4039 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  { ( F `
 W ) }  =  { U }
)
5 grpkerinj.1 . . . . . . . . . 10  |-  X  =  ran  G
6 grpkerinj.3 . . . . . . . . . 10  |-  Y  =  ran  H
75, 6ghomf 29975 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  F : X --> Y )
8 ffn 5731 . . . . . . . . 9  |-  ( F : X --> Y  ->  F  Fn  X )
97, 8syl 16 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  F  Fn  X
)
105, 1grpoidcl 24923 . . . . . . . . 9  |-  ( G  e.  GrpOp  ->  W  e.  X )
11103ad2ant1 1017 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  W  e.  X
)
12 fnsnfv 5927 . . . . . . . 8  |-  ( ( F  Fn  X  /\  W  e.  X )  ->  { ( F `  W ) }  =  ( F " { W } ) )
139, 11, 12syl2anc 661 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  { ( F `
 W ) }  =  ( F " { W } ) )
144, 13eqtr3d 2510 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  { U }  =  ( F " { W } ) )
1514imaeq2d 5337 . . . . 5  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( `' F " { U } )  =  ( `' F " ( F " { W } ) ) )
1615adantl 466 . . . 4  |-  ( ( F : X -1-1-> Y  /\  ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
) )  ->  ( `' F " { U } )  =  ( `' F " ( F
" { W }
) ) )
1710snssd 4172 . . . . . 6  |-  ( G  e.  GrpOp  ->  { W }  C_  X )
18173ad2ant1 1017 . . . . 5  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  { W }  C_  X )
19 f1imacnv 5832 . . . . 5  |-  ( ( F : X -1-1-> Y  /\  { W }  C_  X )  ->  ( `' F " ( F
" { W }
) )  =  { W } )
2018, 19sylan2 474 . . . 4  |-  ( ( F : X -1-1-> Y  /\  ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
) )  ->  ( `' F " ( F
" { W }
) )  =  { W } )
2116, 20eqtrd 2508 . . 3  |-  ( ( F : X -1-1-> Y  /\  ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
) )  ->  ( `' F " { U } )  =  { W } )
2221expcom 435 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( F : X -1-1-> Y  ->  ( `' F " { U } )  =  { W } ) )
237adantr 465 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( `' F " { U }
)  =  { W } )  ->  F : X --> Y )
24 simpl2 1000 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  ->  H  e.  GrpOp )
257ffvelrnda 6021 . . . . . . . . 9  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  x  e.  X )  ->  ( F `  x )  e.  Y )
2625adantrr 716 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( F `  x
)  e.  Y )
277ffvelrnda 6021 . . . . . . . . 9  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  y  e.  X )  ->  ( F `  y )  e.  Y )
2827adantrl 715 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( F `  y
)  e.  Y )
29 eqid 2467 . . . . . . . . 9  |-  (  /g  `  H )  =  (  /g  `  H )
306, 2, 29grpoeqdivid 29974 . . . . . . . 8  |-  ( ( H  e.  GrpOp  /\  ( F `  x )  e.  Y  /\  ( F `  y )  e.  Y )  ->  (
( F `  x
)  =  ( F `
 y )  <->  ( ( F `  x )
(  /g  `  H ) ( F `  y
) )  =  U ) )
3124, 26, 28, 30syl3anc 1228 . . . . . . 7  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( F `  x )  =  ( F `  y )  <-> 
( ( F `  x ) (  /g  `  H ) ( F `
 y ) )  =  U ) )
3231adantlr 714 . . . . . 6  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( `' F " { U } )  =  { W } )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F `  x )  =  ( F `  y )  <->  ( ( F `  x )
(  /g  `  H ) ( F `  y
) )  =  U ) )
33 eqid 2467 . . . . . . . . . 10  |-  (  /g  `  G )  =  (  /g  `  G )
345, 33, 29ghomdiv 29977 . . . . . . . . 9  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( F `  (
x (  /g  `  G
) y ) )  =  ( ( F `
 x ) (  /g  `  H ) ( F `  y
) ) )
3534adantlr 714 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( `' F " { U } )  =  { W } )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( F `  ( x (  /g  `  G ) y ) )  =  ( ( F `  x ) (  /g  `  H
) ( F `  y ) ) )
3635eqeq1d 2469 . . . . . . 7  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( `' F " { U } )  =  { W } )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F `  ( x
(  /g  `  G ) y ) )  =  U  <->  ( ( F `
 x ) (  /g  `  H ) ( F `  y
) )  =  U ) )
37 fvex 5876 . . . . . . . . . . 11  |-  (GId `  H )  e.  _V
382, 37eqeltri 2551 . . . . . . . . . 10  |-  U  e. 
_V
3938snid 4055 . . . . . . . . 9  |-  U  e. 
{ U }
40 eleq1 2539 . . . . . . . . 9  |-  ( ( F `  ( x (  /g  `  G
) y ) )  =  U  ->  (
( F `  (
x (  /g  `  G
) y ) )  e.  { U }  <->  U  e.  { U }
) )
4139, 40mpbiri 233 . . . . . . . 8  |-  ( ( F `  ( x (  /g  `  G
) y ) )  =  U  ->  ( F `  ( x
(  /g  `  G ) y ) )  e. 
{ U } )
42 ffun 5733 . . . . . . . . . . . . . 14  |-  ( F : X --> Y  ->  Fun  F )
437, 42syl 16 . . . . . . . . . . . . 13  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  Fun  F )
4443adantr 465 . . . . . . . . . . . 12  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  ->  Fun  F )
455, 33grpodivcl 24953 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  GrpOp  /\  x  e.  X  /\  y  e.  X )  ->  (
x (  /g  `  G
) y )  e.  X )
46453expb 1197 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( x
(  /g  `  G ) y )  e.  X
)
47463ad2antl1 1158 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x (  /g  `  G ) y )  e.  X )
48 fdm 5735 . . . . . . . . . . . . . . 15  |-  ( F : X --> Y  ->  dom  F  =  X )
497, 48syl 16 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  dom  F  =  X )
5049adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  ->  dom  F  =  X )
5147, 50eleqtrrd 2558 . . . . . . . . . . . 12  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x (  /g  `  G ) y )  e.  dom  F )
52 fvimacnv 5996 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  (
x (  /g  `  G
) y )  e. 
dom  F )  -> 
( ( F `  ( x (  /g  `  G ) y ) )  e.  { U } 
<->  ( x (  /g  `  G ) y )  e.  ( `' F " { U } ) ) )
5344, 51, 52syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( F `  ( x (  /g  `  G ) y ) )  e.  { U } 
<->  ( x (  /g  `  G ) y )  e.  ( `' F " { U } ) ) )
54 eleq2 2540 . . . . . . . . . . 11  |-  ( ( `' F " { U } )  =  { W }  ->  ( ( x (  /g  `  G
) y )  e.  ( `' F " { U } )  <->  ( x
(  /g  `  G ) y )  e.  { W } ) )
5553, 54sylan9bb 699 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  ( `' F " { U } )  =  { W } )  ->  (
( F `  (
x (  /g  `  G
) y ) )  e.  { U }  <->  ( x (  /g  `  G
) y )  e. 
{ W } ) )
5655an32s 802 . . . . . . . . 9  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( `' F " { U } )  =  { W } )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F `  ( x
(  /g  `  G ) y ) )  e. 
{ U }  <->  ( x
(  /g  `  G ) y )  e.  { W } ) )
57 elsni 4052 . . . . . . . . . . 11  |-  ( ( x (  /g  `  G
) y )  e. 
{ W }  ->  ( x (  /g  `  G
) y )  =  W )
585, 1, 33grpoeqdivid 29974 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  x  e.  X  /\  y  e.  X )  ->  (
x  =  y  <->  ( x
(  /g  `  G ) y )  =  W ) )
5958biimprd 223 . . . . . . . . . . . . 13  |-  ( ( G  e.  GrpOp  /\  x  e.  X  /\  y  e.  X )  ->  (
( x (  /g  `  G ) y )  =  W  ->  x  =  y ) )
60593expb 1197 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( (
x (  /g  `  G
) y )  =  W  ->  x  =  y ) )
61603ad2antl1 1158 . . . . . . . . . . 11  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( x (  /g  `  G ) y )  =  W  ->  x  =  y ) )
6257, 61syl5 32 . . . . . . . . . 10  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( x (  /g  `  G ) y )  e.  { W }  ->  x  =  y ) )
6362adantlr 714 . . . . . . . . 9  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( `' F " { U } )  =  { W } )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( (
x (  /g  `  G
) y )  e. 
{ W }  ->  x  =  y ) )
6456, 63sylbid 215 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( `' F " { U } )  =  { W } )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F `  ( x
(  /g  `  G ) y ) )  e. 
{ U }  ->  x  =  y ) )
6541, 64syl5 32 . . . . . . 7  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( `' F " { U } )  =  { W } )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F `  ( x
(  /g  `  G ) y ) )  =  U  ->  x  =  y ) )
6636, 65sylbird 235 . . . . . 6  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( `' F " { U } )  =  { W } )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( (
( F `  x
) (  /g  `  H
) ( F `  y ) )  =  U  ->  x  =  y ) )
6732, 66sylbid 215 . . . . 5  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( `' F " { U } )  =  { W } )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
6867ralrimivva 2885 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( `' F " { U }
)  =  { W } )  ->  A. x  e.  X  A. y  e.  X  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
69 dff13 6154 . . . 4  |-  ( F : X -1-1-> Y  <->  ( F : X --> Y  /\  A. x  e.  X  A. y  e.  X  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
7023, 68, 69sylanbrc 664 . . 3  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( `' F " { U }
)  =  { W } )  ->  F : X -1-1-> Y )
7170ex 434 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( ( `' F " { U } )  =  { W }  ->  F : X -1-1-> Y ) )
7222, 71impbid 191 1  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( F : X -1-1-> Y  <->  ( `' F " { U } )  =  { W }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113    C_ wss 3476   {csn 4027   `'ccnv 4998   dom cdm 4999   ran crn 5000   "cima 5002   Fun wfun 5582    Fn wfn 5583   -->wf 5584   -1-1->wf1 5585   ` cfv 5588  (class class class)co 6284   GrpOpcgr 24892  GIdcgi 24893    /g cgs 24895   GrpOpHom cghom 25063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-1st 6784  df-2nd 6785  df-grpo 24897  df-gid 24898  df-ginv 24899  df-gdiv 24900  df-ghom 25064
This theorem is referenced by:  rngokerinj  30009
  Copyright terms: Public domain W3C validator