MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvop Unicode version

Theorem grpoinvop 21782
Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpasscan1.1  |-  X  =  ran  G
grpasscan1.2  |-  N  =  ( inv `  G
)
Assertion
Ref Expression
grpoinvop  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G B ) )  =  ( ( N `  B ) G ( N `  A ) ) )

Proof of Theorem grpoinvop
StepHypRef Expression
1 simp1 957 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  G  e.  GrpOp )
2 simp2 958 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  A  e.  X )
3 simp3 959 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  B  e.  X )
4 grpasscan1.1 . . . . . . 7  |-  X  =  ran  G
5 grpasscan1.2 . . . . . . 7  |-  N  =  ( inv `  G
)
64, 5grpoinvcl 21767 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  ( N `  B )  e.  X )
763adant2 976 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  B )  e.  X )
84, 5grpoinvcl 21767 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  A )  e.  X )
983adant3 977 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  A )  e.  X )
104grpocl 21741 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( N `  B )  e.  X  /\  ( N `  A )  e.  X )  ->  (
( N `  B
) G ( N `
 A ) )  e.  X )
111, 7, 9, 10syl3anc 1184 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  B
) G ( N `
 A ) )  e.  X )
124grpoass 21744 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  B ) G ( N `  A ) )  e.  X ) )  ->  ( ( A G B ) G ( ( N `  B ) G ( N `  A ) ) )  =  ( A G ( B G ( ( N `
 B ) G ( N `  A
) ) ) ) )
131, 2, 3, 11, 12syl13anc 1186 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( A G B ) G ( ( N `  B ) G ( N `  A ) ) )  =  ( A G ( B G ( ( N `  B
) G ( N `
 A ) ) ) ) )
14 eqid 2404 . . . . . . . 8  |-  (GId `  G )  =  (GId
`  G )
154, 14, 5grporinv 21770 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  ( B G ( N `  B ) )  =  (GId `  G )
)
16153adant2 976 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( B G ( N `  B ) )  =  (GId `  G )
)
1716oveq1d 6055 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( B G ( N `  B ) ) G ( N `
 A ) )  =  ( (GId `  G ) G ( N `  A ) ) )
184grpoass 21744 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  ( N `  B )  e.  X  /\  ( N `  A )  e.  X ) )  -> 
( ( B G ( N `  B
) ) G ( N `  A ) )  =  ( B G ( ( N `
 B ) G ( N `  A
) ) ) )
191, 3, 7, 9, 18syl13anc 1186 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( B G ( N `  B ) ) G ( N `
 A ) )  =  ( B G ( ( N `  B ) G ( N `  A ) ) ) )
204, 14grpolid 21760 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  ( N `  A )  e.  X )  ->  (
(GId `  G ) G ( N `  A ) )  =  ( N `  A
) )
218, 20syldan 457 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
(GId `  G ) G ( N `  A ) )  =  ( N `  A
) )
22213adant3 977 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
(GId `  G ) G ( N `  A ) )  =  ( N `  A
) )
2317, 19, 223eqtr3d 2444 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( B G ( ( N `
 B ) G ( N `  A
) ) )  =  ( N `  A
) )
2423oveq2d 6056 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( B G ( ( N `  B ) G ( N `  A ) ) ) )  =  ( A G ( N `  A ) ) )
254, 14, 5grporinv 21770 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A G ( N `  A ) )  =  (GId `  G )
)
26253adant3 977 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( N `  A ) )  =  (GId `  G )
)
2713, 24, 263eqtrd 2440 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( A G B ) G ( ( N `  B ) G ( N `  A ) ) )  =  (GId `  G
) )
284grpocl 21741 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
294, 14, 5grpoinvid1 21771 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A G B )  e.  X  /\  ( ( N `  B ) G ( N `  A ) )  e.  X )  ->  (
( N `  ( A G B ) )  =  ( ( N `
 B ) G ( N `  A
) )  <->  ( ( A G B ) G ( ( N `  B ) G ( N `  A ) ) )  =  (GId
`  G ) ) )
301, 28, 11, 29syl3anc 1184 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  ( A G B ) )  =  ( ( N `
 B ) G ( N `  A
) )  <->  ( ( A G B ) G ( ( N `  B ) G ( N `  A ) ) )  =  (GId
`  G ) ) )
3127, 30mpbird 224 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G B ) )  =  ( ( N `  B ) G ( N `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1721   ran crn 4838   ` cfv 5413  (class class class)co 6040   GrpOpcgr 21727  GIdcgi 21728   invcgn 21729
This theorem is referenced by:  grpoinvdiv  21786  grpopnpcan2  21794  gxcom  21810  gxinv  21811  gxsuc  21813  gxdi  21837
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-riota 6508  df-grpo 21732  df-gid 21733  df-ginv 21734
  Copyright terms: Public domain W3C validator