MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvop Structured version   Unicode version

Theorem grpoinvop 23727
Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpasscan1.1  |-  X  =  ran  G
grpasscan1.2  |-  N  =  ( inv `  G
)
Assertion
Ref Expression
grpoinvop  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G B ) )  =  ( ( N `  B ) G ( N `  A ) ) )

Proof of Theorem grpoinvop
StepHypRef Expression
1 simp1 988 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  G  e.  GrpOp )
2 simp2 989 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  A  e.  X )
3 simp3 990 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  B  e.  X )
4 grpasscan1.1 . . . . . . 7  |-  X  =  ran  G
5 grpasscan1.2 . . . . . . 7  |-  N  =  ( inv `  G
)
64, 5grpoinvcl 23712 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  ( N `  B )  e.  X )
763adant2 1007 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  B )  e.  X )
84, 5grpoinvcl 23712 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  A )  e.  X )
983adant3 1008 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  A )  e.  X )
104grpocl 23686 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( N `  B )  e.  X  /\  ( N `  A )  e.  X )  ->  (
( N `  B
) G ( N `
 A ) )  e.  X )
111, 7, 9, 10syl3anc 1218 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  B
) G ( N `
 A ) )  e.  X )
124grpoass 23689 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  B ) G ( N `  A ) )  e.  X ) )  ->  ( ( A G B ) G ( ( N `  B ) G ( N `  A ) ) )  =  ( A G ( B G ( ( N `
 B ) G ( N `  A
) ) ) ) )
131, 2, 3, 11, 12syl13anc 1220 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( A G B ) G ( ( N `  B ) G ( N `  A ) ) )  =  ( A G ( B G ( ( N `  B
) G ( N `
 A ) ) ) ) )
14 eqid 2442 . . . . . . . 8  |-  (GId `  G )  =  (GId
`  G )
154, 14, 5grporinv 23715 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  ( B G ( N `  B ) )  =  (GId `  G )
)
16153adant2 1007 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( B G ( N `  B ) )  =  (GId `  G )
)
1716oveq1d 6105 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( B G ( N `  B ) ) G ( N `
 A ) )  =  ( (GId `  G ) G ( N `  A ) ) )
184grpoass 23689 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  ( N `  B )  e.  X  /\  ( N `  A )  e.  X ) )  -> 
( ( B G ( N `  B
) ) G ( N `  A ) )  =  ( B G ( ( N `
 B ) G ( N `  A
) ) ) )
191, 3, 7, 9, 18syl13anc 1220 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( B G ( N `  B ) ) G ( N `
 A ) )  =  ( B G ( ( N `  B ) G ( N `  A ) ) ) )
204, 14grpolid 23705 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  ( N `  A )  e.  X )  ->  (
(GId `  G ) G ( N `  A ) )  =  ( N `  A
) )
218, 20syldan 470 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
(GId `  G ) G ( N `  A ) )  =  ( N `  A
) )
22213adant3 1008 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
(GId `  G ) G ( N `  A ) )  =  ( N `  A
) )
2317, 19, 223eqtr3d 2482 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( B G ( ( N `
 B ) G ( N `  A
) ) )  =  ( N `  A
) )
2423oveq2d 6106 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( B G ( ( N `  B ) G ( N `  A ) ) ) )  =  ( A G ( N `  A ) ) )
254, 14, 5grporinv 23715 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A G ( N `  A ) )  =  (GId `  G )
)
26253adant3 1008 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( N `  A ) )  =  (GId `  G )
)
2713, 24, 263eqtrd 2478 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( A G B ) G ( ( N `  B ) G ( N `  A ) ) )  =  (GId `  G
) )
284grpocl 23686 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
294, 14, 5grpoinvid1 23716 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A G B )  e.  X  /\  ( ( N `  B ) G ( N `  A ) )  e.  X )  ->  (
( N `  ( A G B ) )  =  ( ( N `
 B ) G ( N `  A
) )  <->  ( ( A G B ) G ( ( N `  B ) G ( N `  A ) ) )  =  (GId
`  G ) ) )
301, 28, 11, 29syl3anc 1218 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  ( A G B ) )  =  ( ( N `
 B ) G ( N `  A
) )  <->  ( ( A G B ) G ( ( N `  B ) G ( N `  A ) ) )  =  (GId
`  G ) ) )
3127, 30mpbird 232 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G B ) )  =  ( ( N `  B ) G ( N `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 965    = wceq 1369    e. wcel 1756   ran crn 4840   ` cfv 5417  (class class class)co 6090   GrpOpcgr 23672  GIdcgi 23673   invcgn 23674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pr 4530  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-id 4635  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-grpo 23677  df-gid 23678  df-ginv 23679
This theorem is referenced by:  grpoinvdiv  23731  grpopnpcan2  23739  gxcom  23755  gxinv  23756  gxsuc  23758  gxdi  23782
  Copyright terms: Public domain W3C validator