MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoidinvlem2 Structured version   Unicode version

Theorem grpoidinvlem2 23627
Description: Lemma for grpoidinv 23630. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1  |-  X  =  ran  G
Assertion
Ref Expression
grpoidinvlem2  |-  ( ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X
) )  /\  (
( U G Y )  =  Y  /\  ( Y G A )  =  U ) )  ->  ( ( A G Y ) G ( A G Y ) )  =  ( A G Y ) )

Proof of Theorem grpoidinvlem2
StepHypRef Expression
1 simprr 751 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X )
)  ->  A  e.  X )
2 simprl 750 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X )
)  ->  Y  e.  X )
3 grpfo.1 . . . . . . . 8  |-  X  =  ran  G
43grpocl 23622 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  Y  e.  X )  ->  ( A G Y )  e.  X )
543com23 1188 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  Y  e.  X  /\  A  e.  X )  ->  ( A G Y )  e.  X )
653expb 1183 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X )
)  ->  ( A G Y )  e.  X
)
71, 2, 63jca 1163 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X )
)  ->  ( A  e.  X  /\  Y  e.  X  /\  ( A G Y )  e.  X ) )
83grpoass 23625 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  Y  e.  X  /\  ( A G Y )  e.  X ) )  ->  ( ( A G Y ) G ( A G Y ) )  =  ( A G ( Y G ( A G Y ) ) ) )
97, 8syldan 467 . . 3  |-  ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X )
)  ->  ( ( A G Y ) G ( A G Y ) )  =  ( A G ( Y G ( A G Y ) ) ) )
109adantr 462 . 2  |-  ( ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X
) )  /\  (
( U G Y )  =  Y  /\  ( Y G A )  =  U ) )  ->  ( ( A G Y ) G ( A G Y ) )  =  ( A G ( Y G ( A G Y ) ) ) )
11 oveq1 6097 . . . . . . 7  |-  ( ( Y G A )  =  U  ->  (
( Y G A ) G Y )  =  ( U G Y ) )
1211adantl 463 . . . . . 6  |-  ( ( ( U G Y )  =  Y  /\  ( Y G A )  =  U )  -> 
( ( Y G A ) G Y )  =  ( U G Y ) )
13 simpl 454 . . . . . 6  |-  ( ( ( U G Y )  =  Y  /\  ( Y G A )  =  U )  -> 
( U G Y )  =  Y )
1412, 13eqtr2d 2474 . . . . 5  |-  ( ( ( U G Y )  =  Y  /\  ( Y G A )  =  U )  ->  Y  =  ( ( Y G A ) G Y ) )
15 id 22 . . . . . . 7  |-  ( ( Y  e.  X  /\  A  e.  X  /\  Y  e.  X )  ->  ( Y  e.  X  /\  A  e.  X  /\  Y  e.  X
) )
16153anidm13 1271 . . . . . 6  |-  ( ( Y  e.  X  /\  A  e.  X )  ->  ( Y  e.  X  /\  A  e.  X  /\  Y  e.  X
) )
173grpoass 23625 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X  /\  Y  e.  X )
)  ->  ( ( Y G A ) G Y )  =  ( Y G ( A G Y ) ) )
1816, 17sylan2 471 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X )
)  ->  ( ( Y G A ) G Y )  =  ( Y G ( A G Y ) ) )
1914, 18sylan9eqr 2495 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X
) )  /\  (
( U G Y )  =  Y  /\  ( Y G A )  =  U ) )  ->  Y  =  ( Y G ( A G Y ) ) )
2019eqcomd 2446 . . 3  |-  ( ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X
) )  /\  (
( U G Y )  =  Y  /\  ( Y G A )  =  U ) )  ->  ( Y G ( A G Y ) )  =  Y )
2120oveq2d 6106 . 2  |-  ( ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X
) )  /\  (
( U G Y )  =  Y  /\  ( Y G A )  =  U ) )  ->  ( A G ( Y G ( A G Y ) ) )  =  ( A G Y ) )
2210, 21eqtrd 2473 1  |-  ( ( ( G  e.  GrpOp  /\  ( Y  e.  X  /\  A  e.  X
) )  /\  (
( U G Y )  =  Y  /\  ( Y G A )  =  U ) )  ->  ( ( A G Y ) G ( A G Y ) )  =  ( A G Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   ran crn 4837  (class class class)co 6090   GrpOpcgr 23608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-fo 5421  df-fv 5423  df-ov 6093  df-grpo 23613
This theorem is referenced by:  grpoidinvlem3  23628
  Copyright terms: Public domain W3C validator