MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoidinv2 Structured version   Visualization version   Unicode version

Theorem grpoidinv2 25946
Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpoidval.1  |-  X  =  ran  G
grpoidval.2  |-  U  =  (GId `  G )
Assertion
Ref Expression
grpoidinv2  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( ( U G A )  =  A  /\  ( A G U )  =  A )  /\  E. y  e.  X  ( (
y G A )  =  U  /\  ( A G y )  =  U ) ) )
Distinct variable groups:    y, A    y, G    y, U    y, X

Proof of Theorem grpoidinv2
Dummy variables  x  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpoidval.1 . . . . . . 7  |-  X  =  ran  G
2 grpoidval.2 . . . . . . 7  |-  U  =  (GId `  G )
31, 2grpoidval 25944 . . . . . 6  |-  ( G  e.  GrpOp  ->  U  =  ( iota_ u  e.  X  A. x  e.  X  ( u G x )  =  x ) )
41grpoideu 25937 . . . . . . 7  |-  ( G  e.  GrpOp  ->  E! u  e.  X  A. x  e.  X  ( u G x )  =  x )
5 riotacl2 6265 . . . . . . 7  |-  ( E! u  e.  X  A. x  e.  X  (
u G x )  =  x  ->  ( iota_ u  e.  X  A. x  e.  X  (
u G x )  =  x )  e. 
{ u  e.  X  |  A. x  e.  X  ( u G x )  =  x }
)
64, 5syl 17 . . . . . 6  |-  ( G  e.  GrpOp  ->  ( iota_ u  e.  X  A. x  e.  X  ( u G x )  =  x )  e.  {
u  e.  X  |  A. x  e.  X  ( u G x )  =  x }
)
73, 6eqeltrd 2529 . . . . 5  |-  ( G  e.  GrpOp  ->  U  e.  { u  e.  X  |  A. x  e.  X  ( u G x )  =  x }
)
8 simpll 760 . . . . . . . . . . 11  |-  ( ( ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( (
y G x )  =  u  /\  (
x G y )  =  u ) )  ->  ( u G x )  =  x )
98ralimi 2781 . . . . . . . . . 10  |-  ( A. x  e.  X  (
( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( (
y G x )  =  u  /\  (
x G y )  =  u ) )  ->  A. x  e.  X  ( u G x )  =  x )
109rgenw 2749 . . . . . . . . 9  |-  A. u  e.  X  ( A. x  e.  X  (
( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( (
y G x )  =  u  /\  (
x G y )  =  u ) )  ->  A. x  e.  X  ( u G x )  =  x )
1110a1i 11 . . . . . . . 8  |-  ( G  e.  GrpOp  ->  A. u  e.  X  ( A. x  e.  X  (
( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( (
y G x )  =  u  /\  (
x G y )  =  u ) )  ->  A. x  e.  X  ( u G x )  =  x ) )
121grpoidinv 25936 . . . . . . . 8  |-  ( G  e.  GrpOp  ->  E. u  e.  X  A. x  e.  X  ( (
( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u ) ) )
1311, 12, 43jca 1188 . . . . . . 7  |-  ( G  e.  GrpOp  ->  ( A. u  e.  X  ( A. x  e.  X  ( ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  (
( y G x )  =  u  /\  ( x G y )  =  u ) )  ->  A. x  e.  X  ( u G x )  =  x )  /\  E. u  e.  X  A. x  e.  X  (
( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( (
y G x )  =  u  /\  (
x G y )  =  u ) )  /\  E! u  e.  X  A. x  e.  X  ( u G x )  =  x ) )
14 reupick2 3729 . . . . . . 7  |-  ( ( ( A. u  e.  X  ( A. x  e.  X  ( (
( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u ) )  ->  A. x  e.  X  ( u G x )  =  x )  /\  E. u  e.  X  A. x  e.  X  ( ( ( u G x )  =  x  /\  (
x G u )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u ) )  /\  E! u  e.  X  A. x  e.  X  ( u G x )  =  x )  /\  u  e.  X )  ->  ( A. x  e.  X  ( u G x )  =  x  <->  A. x  e.  X  ( (
( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u ) ) ) )
1513, 14sylan 474 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  u  e.  X )  ->  ( A. x  e.  X  ( u G x )  =  x  <->  A. x  e.  X  ( (
( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u ) ) ) )
1615rabbidva 3035 . . . . 5  |-  ( G  e.  GrpOp  ->  { u  e.  X  |  A. x  e.  X  (
u G x )  =  x }  =  { u  e.  X  |  A. x  e.  X  ( ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  (
( y G x )  =  u  /\  ( x G y )  =  u ) ) } )
177, 16eleqtrd 2531 . . . 4  |-  ( G  e.  GrpOp  ->  U  e.  { u  e.  X  |  A. x  e.  X  ( ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  (
( y G x )  =  u  /\  ( x G y )  =  u ) ) } )
18 oveq1 6297 . . . . . . . . 9  |-  ( u  =  U  ->  (
u G x )  =  ( U G x ) )
1918eqeq1d 2453 . . . . . . . 8  |-  ( u  =  U  ->  (
( u G x )  =  x  <->  ( U G x )  =  x ) )
20 oveq2 6298 . . . . . . . . 9  |-  ( u  =  U  ->  (
x G u )  =  ( x G U ) )
2120eqeq1d 2453 . . . . . . . 8  |-  ( u  =  U  ->  (
( x G u )  =  x  <->  ( x G U )  =  x ) )
2219, 21anbi12d 717 . . . . . . 7  |-  ( u  =  U  ->  (
( ( u G x )  =  x  /\  ( x G u )  =  x )  <->  ( ( U G x )  =  x  /\  ( x G U )  =  x ) ) )
23 eqeq2 2462 . . . . . . . . 9  |-  ( u  =  U  ->  (
( y G x )  =  u  <->  ( y G x )  =  U ) )
24 eqeq2 2462 . . . . . . . . 9  |-  ( u  =  U  ->  (
( x G y )  =  u  <->  ( x G y )  =  U ) )
2523, 24anbi12d 717 . . . . . . . 8  |-  ( u  =  U  ->  (
( ( y G x )  =  u  /\  ( x G y )  =  u )  <->  ( ( y G x )  =  U  /\  ( x G y )  =  U ) ) )
2625rexbidv 2901 . . . . . . 7  |-  ( u  =  U  ->  ( E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u )  <->  E. y  e.  X  ( ( y G x )  =  U  /\  ( x G y )  =  U ) ) )
2722, 26anbi12d 717 . . . . . 6  |-  ( u  =  U  ->  (
( ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  (
( y G x )  =  u  /\  ( x G y )  =  u ) )  <->  ( ( ( U G x )  =  x  /\  (
x G U )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  U  /\  ( x G y )  =  U ) ) ) )
2827ralbidv 2827 . . . . 5  |-  ( u  =  U  ->  ( A. x  e.  X  ( ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  (
( y G x )  =  u  /\  ( x G y )  =  u ) )  <->  A. x  e.  X  ( ( ( U G x )  =  x  /\  ( x G U )  =  x )  /\  E. y  e.  X  (
( y G x )  =  U  /\  ( x G y )  =  U ) ) ) )
2928elrab 3196 . . . 4  |-  ( U  e.  { u  e.  X  |  A. x  e.  X  ( (
( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u ) ) }  <-> 
( U  e.  X  /\  A. x  e.  X  ( ( ( U G x )  =  x  /\  ( x G U )  =  x )  /\  E. y  e.  X  (
( y G x )  =  U  /\  ( x G y )  =  U ) ) ) )
3017, 29sylib 200 . . 3  |-  ( G  e.  GrpOp  ->  ( U  e.  X  /\  A. x  e.  X  ( (
( U G x )  =  x  /\  ( x G U )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  U  /\  ( x G y )  =  U ) ) ) )
3130simprd 465 . 2  |-  ( G  e.  GrpOp  ->  A. x  e.  X  ( (
( U G x )  =  x  /\  ( x G U )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  U  /\  ( x G y )  =  U ) ) )
32 oveq2 6298 . . . . . 6  |-  ( x  =  A  ->  ( U G x )  =  ( U G A ) )
33 id 22 . . . . . 6  |-  ( x  =  A  ->  x  =  A )
3432, 33eqeq12d 2466 . . . . 5  |-  ( x  =  A  ->  (
( U G x )  =  x  <->  ( U G A )  =  A ) )
35 oveq1 6297 . . . . . 6  |-  ( x  =  A  ->  (
x G U )  =  ( A G U ) )
3635, 33eqeq12d 2466 . . . . 5  |-  ( x  =  A  ->  (
( x G U )  =  x  <->  ( A G U )  =  A ) )
3734, 36anbi12d 717 . . . 4  |-  ( x  =  A  ->  (
( ( U G x )  =  x  /\  ( x G U )  =  x )  <->  ( ( U G A )  =  A  /\  ( A G U )  =  A ) ) )
38 oveq2 6298 . . . . . . 7  |-  ( x  =  A  ->  (
y G x )  =  ( y G A ) )
3938eqeq1d 2453 . . . . . 6  |-  ( x  =  A  ->  (
( y G x )  =  U  <->  ( y G A )  =  U ) )
40 oveq1 6297 . . . . . . 7  |-  ( x  =  A  ->  (
x G y )  =  ( A G y ) )
4140eqeq1d 2453 . . . . . 6  |-  ( x  =  A  ->  (
( x G y )  =  U  <->  ( A G y )  =  U ) )
4239, 41anbi12d 717 . . . . 5  |-  ( x  =  A  ->  (
( ( y G x )  =  U  /\  ( x G y )  =  U )  <->  ( ( y G A )  =  U  /\  ( A G y )  =  U ) ) )
4342rexbidv 2901 . . . 4  |-  ( x  =  A  ->  ( E. y  e.  X  ( ( y G x )  =  U  /\  ( x G y )  =  U )  <->  E. y  e.  X  ( ( y G A )  =  U  /\  ( A G y )  =  U ) ) )
4437, 43anbi12d 717 . . 3  |-  ( x  =  A  ->  (
( ( ( U G x )  =  x  /\  ( x G U )  =  x )  /\  E. y  e.  X  (
( y G x )  =  U  /\  ( x G y )  =  U ) )  <->  ( ( ( U G A )  =  A  /\  ( A G U )  =  A )  /\  E. y  e.  X  (
( y G A )  =  U  /\  ( A G y )  =  U ) ) ) )
4544rspccva 3149 . 2  |-  ( ( A. x  e.  X  ( ( ( U G x )  =  x  /\  ( x G U )  =  x )  /\  E. y  e.  X  (
( y G x )  =  U  /\  ( x G y )  =  U ) )  /\  A  e.  X )  ->  (
( ( U G A )  =  A  /\  ( A G U )  =  A )  /\  E. y  e.  X  ( (
y G A )  =  U  /\  ( A G y )  =  U ) ) )
4631, 45sylan 474 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( ( U G A )  =  A  /\  ( A G U )  =  A )  /\  E. y  e.  X  ( (
y G A )  =  U  /\  ( A G y )  =  U ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   A.wral 2737   E.wrex 2738   E!wreu 2739   {crab 2741   ran crn 4835   ` cfv 5582   iota_crio 6251  (class class class)co 6290   GrpOpcgr 25914  GIdcgi 25915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-fo 5588  df-fv 5590  df-riota 6252  df-ov 6293  df-grpo 25919  df-gid 25920
This theorem is referenced by:  grpolid  25947  grporid  25948  grporcan  25949  grpoinveu  25950  grpoinv  25955
  Copyright terms: Public domain W3C validator