MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoidinv2 Structured version   Unicode version

Theorem grpoidinv2 23858
Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpoidval.1  |-  X  =  ran  G
grpoidval.2  |-  U  =  (GId `  G )
Assertion
Ref Expression
grpoidinv2  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( ( U G A )  =  A  /\  ( A G U )  =  A )  /\  E. y  e.  X  ( (
y G A )  =  U  /\  ( A G y )  =  U ) ) )
Distinct variable groups:    y, A    y, G    y, U    y, X

Proof of Theorem grpoidinv2
Dummy variables  x  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpoidval.1 . . . . . . 7  |-  X  =  ran  G
2 grpoidval.2 . . . . . . 7  |-  U  =  (GId `  G )
31, 2grpoidval 23856 . . . . . 6  |-  ( G  e.  GrpOp  ->  U  =  ( iota_ u  e.  X  A. x  e.  X  ( u G x )  =  x ) )
41grpoideu 23849 . . . . . . 7  |-  ( G  e.  GrpOp  ->  E! u  e.  X  A. x  e.  X  ( u G x )  =  x )
5 riotacl2 6176 . . . . . . 7  |-  ( E! u  e.  X  A. x  e.  X  (
u G x )  =  x  ->  ( iota_ u  e.  X  A. x  e.  X  (
u G x )  =  x )  e. 
{ u  e.  X  |  A. x  e.  X  ( u G x )  =  x }
)
64, 5syl 16 . . . . . 6  |-  ( G  e.  GrpOp  ->  ( iota_ u  e.  X  A. x  e.  X  ( u G x )  =  x )  e.  {
u  e.  X  |  A. x  e.  X  ( u G x )  =  x }
)
73, 6eqeltrd 2542 . . . . 5  |-  ( G  e.  GrpOp  ->  U  e.  { u  e.  X  |  A. x  e.  X  ( u G x )  =  x }
)
8 simpll 753 . . . . . . . . . . 11  |-  ( ( ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( (
y G x )  =  u  /\  (
x G y )  =  u ) )  ->  ( u G x )  =  x )
98ralimi 2819 . . . . . . . . . 10  |-  ( A. x  e.  X  (
( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( (
y G x )  =  u  /\  (
x G y )  =  u ) )  ->  A. x  e.  X  ( u G x )  =  x )
109rgenw 2901 . . . . . . . . 9  |-  A. u  e.  X  ( A. x  e.  X  (
( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( (
y G x )  =  u  /\  (
x G y )  =  u ) )  ->  A. x  e.  X  ( u G x )  =  x )
1110a1i 11 . . . . . . . 8  |-  ( G  e.  GrpOp  ->  A. u  e.  X  ( A. x  e.  X  (
( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( (
y G x )  =  u  /\  (
x G y )  =  u ) )  ->  A. x  e.  X  ( u G x )  =  x ) )
121grpoidinv 23848 . . . . . . . 8  |-  ( G  e.  GrpOp  ->  E. u  e.  X  A. x  e.  X  ( (
( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u ) ) )
1311, 12, 43jca 1168 . . . . . . 7  |-  ( G  e.  GrpOp  ->  ( A. u  e.  X  ( A. x  e.  X  ( ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  (
( y G x )  =  u  /\  ( x G y )  =  u ) )  ->  A. x  e.  X  ( u G x )  =  x )  /\  E. u  e.  X  A. x  e.  X  (
( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( (
y G x )  =  u  /\  (
x G y )  =  u ) )  /\  E! u  e.  X  A. x  e.  X  ( u G x )  =  x ) )
14 reupick2 3745 . . . . . . 7  |-  ( ( ( A. u  e.  X  ( A. x  e.  X  ( (
( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u ) )  ->  A. x  e.  X  ( u G x )  =  x )  /\  E. u  e.  X  A. x  e.  X  ( ( ( u G x )  =  x  /\  (
x G u )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u ) )  /\  E! u  e.  X  A. x  e.  X  ( u G x )  =  x )  /\  u  e.  X )  ->  ( A. x  e.  X  ( u G x )  =  x  <->  A. x  e.  X  ( (
( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u ) ) ) )
1513, 14sylan 471 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  u  e.  X )  ->  ( A. x  e.  X  ( u G x )  =  x  <->  A. x  e.  X  ( (
( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u ) ) ) )
1615rabbidva 3069 . . . . 5  |-  ( G  e.  GrpOp  ->  { u  e.  X  |  A. x  e.  X  (
u G x )  =  x }  =  { u  e.  X  |  A. x  e.  X  ( ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  (
( y G x )  =  u  /\  ( x G y )  =  u ) ) } )
177, 16eleqtrd 2544 . . . 4  |-  ( G  e.  GrpOp  ->  U  e.  { u  e.  X  |  A. x  e.  X  ( ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  (
( y G x )  =  u  /\  ( x G y )  =  u ) ) } )
18 oveq1 6208 . . . . . . . . 9  |-  ( u  =  U  ->  (
u G x )  =  ( U G x ) )
1918eqeq1d 2456 . . . . . . . 8  |-  ( u  =  U  ->  (
( u G x )  =  x  <->  ( U G x )  =  x ) )
20 oveq2 6209 . . . . . . . . 9  |-  ( u  =  U  ->  (
x G u )  =  ( x G U ) )
2120eqeq1d 2456 . . . . . . . 8  |-  ( u  =  U  ->  (
( x G u )  =  x  <->  ( x G U )  =  x ) )
2219, 21anbi12d 710 . . . . . . 7  |-  ( u  =  U  ->  (
( ( u G x )  =  x  /\  ( x G u )  =  x )  <->  ( ( U G x )  =  x  /\  ( x G U )  =  x ) ) )
23 eqeq2 2469 . . . . . . . . 9  |-  ( u  =  U  ->  (
( y G x )  =  u  <->  ( y G x )  =  U ) )
24 eqeq2 2469 . . . . . . . . 9  |-  ( u  =  U  ->  (
( x G y )  =  u  <->  ( x G y )  =  U ) )
2523, 24anbi12d 710 . . . . . . . 8  |-  ( u  =  U  ->  (
( ( y G x )  =  u  /\  ( x G y )  =  u )  <->  ( ( y G x )  =  U  /\  ( x G y )  =  U ) ) )
2625rexbidv 2868 . . . . . . 7  |-  ( u  =  U  ->  ( E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u )  <->  E. y  e.  X  ( ( y G x )  =  U  /\  ( x G y )  =  U ) ) )
2722, 26anbi12d 710 . . . . . 6  |-  ( u  =  U  ->  (
( ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  (
( y G x )  =  u  /\  ( x G y )  =  u ) )  <->  ( ( ( U G x )  =  x  /\  (
x G U )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  U  /\  ( x G y )  =  U ) ) ) )
2827ralbidv 2846 . . . . 5  |-  ( u  =  U  ->  ( A. x  e.  X  ( ( ( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  (
( y G x )  =  u  /\  ( x G y )  =  u ) )  <->  A. x  e.  X  ( ( ( U G x )  =  x  /\  ( x G U )  =  x )  /\  E. y  e.  X  (
( y G x )  =  U  /\  ( x G y )  =  U ) ) ) )
2928elrab 3224 . . . 4  |-  ( U  e.  { u  e.  X  |  A. x  e.  X  ( (
( u G x )  =  x  /\  ( x G u )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  u  /\  ( x G y )  =  u ) ) }  <-> 
( U  e.  X  /\  A. x  e.  X  ( ( ( U G x )  =  x  /\  ( x G U )  =  x )  /\  E. y  e.  X  (
( y G x )  =  U  /\  ( x G y )  =  U ) ) ) )
3017, 29sylib 196 . . 3  |-  ( G  e.  GrpOp  ->  ( U  e.  X  /\  A. x  e.  X  ( (
( U G x )  =  x  /\  ( x G U )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  U  /\  ( x G y )  =  U ) ) ) )
3130simprd 463 . 2  |-  ( G  e.  GrpOp  ->  A. x  e.  X  ( (
( U G x )  =  x  /\  ( x G U )  =  x )  /\  E. y  e.  X  ( ( y G x )  =  U  /\  ( x G y )  =  U ) ) )
32 oveq2 6209 . . . . . 6  |-  ( x  =  A  ->  ( U G x )  =  ( U G A ) )
33 id 22 . . . . . 6  |-  ( x  =  A  ->  x  =  A )
3432, 33eqeq12d 2476 . . . . 5  |-  ( x  =  A  ->  (
( U G x )  =  x  <->  ( U G A )  =  A ) )
35 oveq1 6208 . . . . . 6  |-  ( x  =  A  ->  (
x G U )  =  ( A G U ) )
3635, 33eqeq12d 2476 . . . . 5  |-  ( x  =  A  ->  (
( x G U )  =  x  <->  ( A G U )  =  A ) )
3734, 36anbi12d 710 . . . 4  |-  ( x  =  A  ->  (
( ( U G x )  =  x  /\  ( x G U )  =  x )  <->  ( ( U G A )  =  A  /\  ( A G U )  =  A ) ) )
38 oveq2 6209 . . . . . . 7  |-  ( x  =  A  ->  (
y G x )  =  ( y G A ) )
3938eqeq1d 2456 . . . . . 6  |-  ( x  =  A  ->  (
( y G x )  =  U  <->  ( y G A )  =  U ) )
40 oveq1 6208 . . . . . . 7  |-  ( x  =  A  ->  (
x G y )  =  ( A G y ) )
4140eqeq1d 2456 . . . . . 6  |-  ( x  =  A  ->  (
( x G y )  =  U  <->  ( A G y )  =  U ) )
4239, 41anbi12d 710 . . . . 5  |-  ( x  =  A  ->  (
( ( y G x )  =  U  /\  ( x G y )  =  U )  <->  ( ( y G A )  =  U  /\  ( A G y )  =  U ) ) )
4342rexbidv 2868 . . . 4  |-  ( x  =  A  ->  ( E. y  e.  X  ( ( y G x )  =  U  /\  ( x G y )  =  U )  <->  E. y  e.  X  ( ( y G A )  =  U  /\  ( A G y )  =  U ) ) )
4437, 43anbi12d 710 . . 3  |-  ( x  =  A  ->  (
( ( ( U G x )  =  x  /\  ( x G U )  =  x )  /\  E. y  e.  X  (
( y G x )  =  U  /\  ( x G y )  =  U ) )  <->  ( ( ( U G A )  =  A  /\  ( A G U )  =  A )  /\  E. y  e.  X  (
( y G A )  =  U  /\  ( A G y )  =  U ) ) ) )
4544rspccva 3178 . 2  |-  ( ( A. x  e.  X  ( ( ( U G x )  =  x  /\  ( x G U )  =  x )  /\  E. y  e.  X  (
( y G x )  =  U  /\  ( x G y )  =  U ) )  /\  A  e.  X )  ->  (
( ( U G A )  =  A  /\  ( A G U )  =  A )  /\  E. y  e.  X  ( (
y G A )  =  U  /\  ( A G y )  =  U ) ) )
4631, 45sylan 471 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( ( U G A )  =  A  /\  ( A G U )  =  A )  /\  E. y  e.  X  ( (
y G A )  =  U  /\  ( A G y )  =  U ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2799   E.wrex 2800   E!wreu 2801   {crab 2803   ran crn 4950   ` cfv 5527   iota_crio 6161  (class class class)co 6201   GrpOpcgr 23826  GIdcgi 23827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-fo 5533  df-fv 5535  df-riota 6162  df-ov 6204  df-grpo 23831  df-gid 23832
This theorem is referenced by:  grpolid  23859  grporid  23860  grporcan  23861  grpoinveu  23862  grpoinv  23867
  Copyright terms: Public domain W3C validator