MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplinv Structured version   Visualization version   Unicode version

Theorem grplinv 16761
Description: The left inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpinv.b  |-  B  =  ( Base `  G
)
grpinv.p  |-  .+  =  ( +g  `  G )
grpinv.u  |-  .0.  =  ( 0g `  G )
grpinv.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grplinv  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  .+  X
)  =  .0.  )

Proof of Theorem grplinv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . . . 5  |-  B  =  ( Base `  G
)
2 grpinv.p . . . . 5  |-  .+  =  ( +g  `  G )
3 grpinv.u . . . . 5  |-  .0.  =  ( 0g `  G )
4 grpinv.n . . . . 5  |-  N  =  ( invg `  G )
51, 2, 3, 4grpinvval 16754 . . . 4  |-  ( X  e.  B  ->  ( N `  X )  =  ( iota_ y  e.  B  ( y  .+  X )  =  .0.  ) )
65adantl 472 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  =  ( iota_ y  e.  B  ( y 
.+  X )  =  .0.  ) )
71, 2, 3grpinveu 16749 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E! y  e.  B  ( y  .+  X
)  =  .0.  )
8 riotacl2 6290 . . . 4  |-  ( E! y  e.  B  ( y  .+  X )  =  .0.  ->  ( iota_ y  e.  B  ( y  .+  X )  =  .0.  )  e. 
{ y  e.  B  |  ( y  .+  X )  =  .0. 
} )
97, 8syl 17 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( iota_ y  e.  B  ( y  .+  X
)  =  .0.  )  e.  { y  e.  B  |  ( y  .+  X )  =  .0. 
} )
106, 9eqeltrd 2540 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  { y  e.  B  |  ( y  .+  X )  =  .0.  } )
11 oveq1 6322 . . . . 5  |-  ( y  =  ( N `  X )  ->  (
y  .+  X )  =  ( ( N `
 X )  .+  X ) )
1211eqeq1d 2464 . . . 4  |-  ( y  =  ( N `  X )  ->  (
( y  .+  X
)  =  .0.  <->  ( ( N `  X )  .+  X )  =  .0.  ) )
1312elrab 3208 . . 3  |-  ( ( N `  X )  e.  { y  e.  B  |  ( y 
.+  X )  =  .0.  }  <->  ( ( N `  X )  e.  B  /\  (
( N `  X
)  .+  X )  =  .0.  ) )
1413simprbi 470 . 2  |-  ( ( N `  X )  e.  { y  e.  B  |  ( y 
.+  X )  =  .0.  }  ->  (
( N `  X
)  .+  X )  =  .0.  )
1510, 14syl 17 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  .+  X
)  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375    = wceq 1455    e. wcel 1898   E!wreu 2751   {crab 2753   ` cfv 5601   iota_crio 6276  (class class class)co 6315   Basecbs 15170   +g cplusg 15239   0gc0g 15387   Grpcgrp 16718   invgcminusg 16719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6277  df-ov 6318  df-0g 15389  df-mgm 16537  df-sgrp 16576  df-mnd 16586  df-grp 16722  df-minusg 16723
This theorem is referenced by:  grprinv  16762  grpinvid1  16763  grpinvid2  16764  isgrpinv  16765  grplcan  16767  grpinvinv  16770  grpinvssd  16780  grpsubadd  16791  grplactcnv  16803  mulgdirlem  16831  prdsinvlem  16843  imasgrp  16851  ghmgrp  16859  issubg2  16881  isnsg3  16900  nmzsubg  16907  ssnmz  16908  eqger  16916  qusgrp  16921  conjghm  16962  galcan  17007  cntzsubg  17039  lsmmod  17374  lsmdisj2  17381  rngnegr  17872  unitlinv  17954  isdrng2  18034  lmodvneg1  18180  psrlinv  18670  evpmodpmf1o  19213  grpvlinv  19469  tgpconcompeqg  21175  qustgpopn  21183  ogrpinv0le  28528  ogrpaddltrbid  28533  ogrpinv0lt  28535  ogrpinvlt  28536  lflnegl  32687  dvhgrp  34720
  Copyright terms: Public domain W3C validator