MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplinv Structured version   Unicode version

Theorem grplinv 15599
Description: The left inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpinv.b  |-  B  =  ( Base `  G
)
grpinv.p  |-  .+  =  ( +g  `  G )
grpinv.u  |-  .0.  =  ( 0g `  G )
grpinv.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grplinv  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  .+  X
)  =  .0.  )

Proof of Theorem grplinv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . . . 5  |-  B  =  ( Base `  G
)
2 grpinv.p . . . . 5  |-  .+  =  ( +g  `  G )
3 grpinv.u . . . . 5  |-  .0.  =  ( 0g `  G )
4 grpinv.n . . . . 5  |-  N  =  ( invg `  G )
51, 2, 3, 4grpinvval 15592 . . . 4  |-  ( X  e.  B  ->  ( N `  X )  =  ( iota_ y  e.  B  ( y  .+  X )  =  .0.  ) )
65adantl 466 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  =  ( iota_ y  e.  B  ( y 
.+  X )  =  .0.  ) )
71, 2, 3grpinveu 15587 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E! y  e.  B  ( y  .+  X
)  =  .0.  )
8 riotacl2 6081 . . . 4  |-  ( E! y  e.  B  ( y  .+  X )  =  .0.  ->  ( iota_ y  e.  B  ( y  .+  X )  =  .0.  )  e. 
{ y  e.  B  |  ( y  .+  X )  =  .0. 
} )
97, 8syl 16 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( iota_ y  e.  B  ( y  .+  X
)  =  .0.  )  e.  { y  e.  B  |  ( y  .+  X )  =  .0. 
} )
106, 9eqeltrd 2517 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  { y  e.  B  |  ( y  .+  X )  =  .0.  } )
11 oveq1 6113 . . . . 5  |-  ( y  =  ( N `  X )  ->  (
y  .+  X )  =  ( ( N `
 X )  .+  X ) )
1211eqeq1d 2451 . . . 4  |-  ( y  =  ( N `  X )  ->  (
( y  .+  X
)  =  .0.  <->  ( ( N `  X )  .+  X )  =  .0.  ) )
1312elrab 3132 . . 3  |-  ( ( N `  X )  e.  { y  e.  B  |  ( y 
.+  X )  =  .0.  }  <->  ( ( N `  X )  e.  B  /\  (
( N `  X
)  .+  X )  =  .0.  ) )
1413simprbi 464 . 2  |-  ( ( N `  X )  e.  { y  e.  B  |  ( y 
.+  X )  =  .0.  }  ->  (
( N `  X
)  .+  X )  =  .0.  )
1510, 14syl 16 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  .+  X
)  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   E!wreu 2732   {crab 2734   ` cfv 5433   iota_crio 6066  (class class class)co 6106   Basecbs 14189   +g cplusg 14253   0gc0g 14393   Grpcgrp 15425   invgcminusg 15426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4418  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-nul 3653  df-if 3807  df-sn 3893  df-pr 3895  df-op 3899  df-uni 4107  df-iun 4188  df-br 4308  df-opab 4366  df-mpt 4367  df-id 4651  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-riota 6067  df-ov 6109  df-0g 14395  df-mnd 15430  df-grp 15560  df-minusg 15561
This theorem is referenced by:  grprinv  15600  grpinvid1  15601  grpinvid2  15602  isgrpinv  15603  grplcan  15605  grpinvinv  15608  grpinvssd  15618  grpsubadd  15628  grplactcnv  15639  mulgdirlem  15666  prdsinvlem  15678  imasgrp  15686  issubg2  15711  isnsg3  15730  nmzsubg  15737  ssnmz  15738  eqger  15746  divsgrp  15751  conjghm  15792  galcan  15837  cntzsubg  15869  lsmmod  16187  lsmdisj2  16194  rngnegr  16701  unitlinv  16784  isdrng2  16857  lmodvneg1  17003  psrlinv  17483  evpmodpmf1o  18041  grpvlinv  18310  tgpconcompeqg  19697  divstgpopn  19705  ogrpinv0le  26194  ogrpaddltrbid  26199  ogrpinv0lt  26201  ogrpinvlt  26202  lflnegl  32740  dvhgrp  34771
  Copyright terms: Public domain W3C validator