MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplcan Structured version   Unicode version

Theorem grplcan 15974
Description: Left cancellation law for groups. (Contributed by NM, 25-Aug-2011.)
Hypotheses
Ref Expression
grplcan.b  |-  B  =  ( Base `  G
)
grplcan.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
grplcan  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( Z  .+  X
)  =  ( Z 
.+  Y )  <->  X  =  Y ) )

Proof of Theorem grplcan
StepHypRef Expression
1 oveq2 6303 . . . . . 6  |-  ( ( Z  .+  X )  =  ( Z  .+  Y )  ->  (
( ( invg `  G ) `  Z
)  .+  ( Z  .+  X ) )  =  ( ( ( invg `  G ) `
 Z )  .+  ( Z  .+  Y ) ) )
21adantl 466 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  ( Z  .+  X )  =  ( Z  .+  Y ) )  ->  ( (
( invg `  G ) `  Z
)  .+  ( Z  .+  X ) )  =  ( ( ( invg `  G ) `
 Z )  .+  ( Z  .+  Y ) ) )
3 grplcan.b . . . . . . . . . . 11  |-  B  =  ( Base `  G
)
4 grplcan.p . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
5 eqid 2467 . . . . . . . . . . 11  |-  ( 0g
`  G )  =  ( 0g `  G
)
6 eqid 2467 . . . . . . . . . . 11  |-  ( invg `  G )  =  ( invg `  G )
73, 4, 5, 6grplinv 15968 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( ( ( invg `  G ) `
 Z )  .+  Z )  =  ( 0g `  G ) )
87adantlr 714 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  Z  e.  B
)  ->  ( (
( invg `  G ) `  Z
)  .+  Z )  =  ( 0g `  G ) )
98oveq1d 6310 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  Z  e.  B
)  ->  ( (
( ( invg `  G ) `  Z
)  .+  Z )  .+  X )  =  ( ( 0g `  G
)  .+  X )
)
103, 6grpinvcl 15967 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( ( invg `  G ) `  Z
)  e.  B )
1110adantrl 715 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Z  e.  B
) )  ->  (
( invg `  G ) `  Z
)  e.  B )
12 simprr 756 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
13 simprl 755 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
1411, 12, 133jca 1176 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Z  e.  B
) )  ->  (
( ( invg `  G ) `  Z
)  e.  B  /\  Z  e.  B  /\  X  e.  B )
)
153, 4grpass 15936 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 Z )  e.  B  /\  Z  e.  B  /\  X  e.  B ) )  -> 
( ( ( ( invg `  G
) `  Z )  .+  Z )  .+  X
)  =  ( ( ( invg `  G ) `  Z
)  .+  ( Z  .+  X ) ) )
1614, 15syldan 470 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( invg `  G ) `
 Z )  .+  Z )  .+  X
)  =  ( ( ( invg `  G ) `  Z
)  .+  ( Z  .+  X ) ) )
1716anassrs 648 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  Z  e.  B
)  ->  ( (
( ( invg `  G ) `  Z
)  .+  Z )  .+  X )  =  ( ( ( invg `  G ) `  Z
)  .+  ( Z  .+  X ) ) )
183, 4, 5grplid 15952 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( 0g `  G )  .+  X
)  =  X )
1918adantr 465 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  Z  e.  B
)  ->  ( ( 0g `  G )  .+  X )  =  X )
209, 17, 193eqtr3d 2516 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  Z  e.  B
)  ->  ( (
( invg `  G ) `  Z
)  .+  ( Z  .+  X ) )  =  X )
2120adantrl 715 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( ( invg `  G ) `
 Z )  .+  ( Z  .+  X ) )  =  X )
2221adantr 465 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  ( Z  .+  X )  =  ( Z  .+  Y ) )  ->  ( (
( invg `  G ) `  Z
)  .+  ( Z  .+  X ) )  =  X )
237adantrl 715 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( invg `  G ) `  Z
)  .+  Z )  =  ( 0g `  G ) )
2423oveq1d 6310 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( invg `  G ) `
 Z )  .+  Z )  .+  Y
)  =  ( ( 0g `  G ) 
.+  Y ) )
2510adantrl 715 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( invg `  G ) `  Z
)  e.  B )
26 simprr 756 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
27 simprl 755 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
2825, 26, 273jca 1176 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( invg `  G ) `  Z
)  e.  B  /\  Z  e.  B  /\  Y  e.  B )
)
293, 4grpass 15936 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 Z )  e.  B  /\  Z  e.  B  /\  Y  e.  B ) )  -> 
( ( ( ( invg `  G
) `  Z )  .+  Z )  .+  Y
)  =  ( ( ( invg `  G ) `  Z
)  .+  ( Z  .+  Y ) ) )
3028, 29syldan 470 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( invg `  G ) `
 Z )  .+  Z )  .+  Y
)  =  ( ( ( invg `  G ) `  Z
)  .+  ( Z  .+  Y ) ) )
313, 4, 5grplid 15952 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( 0g `  G )  .+  Y
)  =  Y )
3231adantrr 716 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( 0g `  G
)  .+  Y )  =  Y )
3324, 30, 323eqtr3d 2516 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( invg `  G ) `  Z
)  .+  ( Z  .+  Y ) )  =  Y )
3433adantlr 714 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( ( invg `  G ) `
 Z )  .+  ( Z  .+  Y ) )  =  Y )
3534adantr 465 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  ( Z  .+  X )  =  ( Z  .+  Y ) )  ->  ( (
( invg `  G ) `  Z
)  .+  ( Z  .+  Y ) )  =  Y )
362, 22, 353eqtr3d 2516 . . . 4  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  ( Z  .+  X )  =  ( Z  .+  Y ) )  ->  X  =  Y )
3736exp53 617 . . 3  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( Y  e.  B  -> 
( Z  e.  B  ->  ( ( Z  .+  X )  =  ( Z  .+  Y )  ->  X  =  Y ) ) ) ) )
38373imp2 1211 . 2  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( Z  .+  X
)  =  ( Z 
.+  Y )  ->  X  =  Y )
)
39 oveq2 6303 . 2  |-  ( X  =  Y  ->  ( Z  .+  X )  =  ( Z  .+  Y
) )
4038, 39impbid1 203 1  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( Z  .+  X
)  =  ( Z 
.+  Y )  <->  X  =  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   ` cfv 5594  (class class class)co 6295   Basecbs 14507   +g cplusg 14572   0gc0g 14712   Grpcgrp 15925   invgcminusg 15926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-0g 14714  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-grp 15929  df-minusg 15930
This theorem is referenced by:  grpidrcan  15975  grpinvinv  15977  grplmulf1o  15984  grplactcnv  16010  conjghm  16169  conjnmzb  16173  sylow3lem2  16521  gex2abl  16730  ringcom  17099  ringlz  17107  lmodlcan  17399  isnumbasgrplem2  30981
  Copyright terms: Public domain W3C validator