MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvval Structured version   Unicode version

Theorem grpinvval 16288
Description: The inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.)
Hypotheses
Ref Expression
grpinvval.b  |-  B  =  ( Base `  G
)
grpinvval.p  |-  .+  =  ( +g  `  G )
grpinvval.o  |-  .0.  =  ( 0g `  G )
grpinvval.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvval  |-  ( X  e.  B  ->  ( N `  X )  =  ( iota_ y  e.  B  ( y  .+  X )  =  .0.  ) )
Distinct variable groups:    y, B    y, G    y, X
Allowed substitution hints:    .+ ( y)    N( y)    .0. ( y)

Proof of Theorem grpinvval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq2 6278 . . . 4  |-  ( x  =  X  ->  (
y  .+  x )  =  ( y  .+  X ) )
21eqeq1d 2456 . . 3  |-  ( x  =  X  ->  (
( y  .+  x
)  =  .0.  <->  ( y  .+  X )  =  .0.  ) )
32riotabidv 6234 . 2  |-  ( x  =  X  ->  ( iota_ y  e.  B  ( y  .+  x )  =  .0.  )  =  ( iota_ y  e.  B  ( y  .+  X
)  =  .0.  )
)
4 grpinvval.b . . 3  |-  B  =  ( Base `  G
)
5 grpinvval.p . . 3  |-  .+  =  ( +g  `  G )
6 grpinvval.o . . 3  |-  .0.  =  ( 0g `  G )
7 grpinvval.n . . 3  |-  N  =  ( invg `  G )
84, 5, 6, 7grpinvfval 16287 . 2  |-  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y  .+  x
)  =  .0.  )
)
9 riotaex 6236 . 2  |-  ( iota_ y  e.  B  ( y 
.+  X )  =  .0.  )  e.  _V
103, 8, 9fvmpt 5931 1  |-  ( X  e.  B  ->  ( N `  X )  =  ( iota_ y  e.  B  ( y  .+  X )  =  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1398    e. wcel 1823   ` cfv 5570   iota_crio 6231  (class class class)co 6270   Basecbs 14716   +g cplusg 14784   0gc0g 14929   invgcminusg 16253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-minusg 16257
This theorem is referenced by:  grplinv  16295  isgrpinv  16299  xrsinvgval  27899  ringinvval  28017
  Copyright terms: Public domain W3C validator