MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvinv Unicode version

Theorem grpinvinv 14813
Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpinvinv.b  |-  B  =  ( Base `  G
)
grpinvinv.n  |-  N  =  ( inv g `  G )
Assertion
Ref Expression
grpinvinv  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  ( N `  X )
)  =  X )

Proof of Theorem grpinvinv
StepHypRef Expression
1 grpinvinv.b . . . . 5  |-  B  =  ( Base `  G
)
2 grpinvinv.n . . . . 5  |-  N  =  ( inv g `  G )
31, 2grpinvcl 14805 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
4 eqid 2404 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
5 eqid 2404 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
61, 4, 5, 2grprinv 14807 . . . 4  |-  ( ( G  e.  Grp  /\  ( N `  X )  e.  B )  -> 
( ( N `  X ) ( +g  `  G ) ( N `
 ( N `  X ) ) )  =  ( 0g `  G ) )
73, 6syldan 457 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X ) ( +g  `  G ) ( N `
 ( N `  X ) ) )  =  ( 0g `  G ) )
81, 4, 5, 2grplinv 14806 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X ) ( +g  `  G ) X )  =  ( 0g `  G ) )
97, 8eqtr4d 2439 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X ) ( +g  `  G ) ( N `
 ( N `  X ) ) )  =  ( ( N `
 X ) ( +g  `  G ) X ) )
10 simpl 444 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  G  e.  Grp )
111, 2grpinvcl 14805 . . . 4  |-  ( ( G  e.  Grp  /\  ( N `  X )  e.  B )  -> 
( N `  ( N `  X )
)  e.  B )
123, 11syldan 457 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  ( N `  X )
)  e.  B )
13 simpr 448 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  X  e.  B )
141, 4grplcan 14812 . . 3  |-  ( ( G  e.  Grp  /\  ( ( N `  ( N `  X ) )  e.  B  /\  X  e.  B  /\  ( N `  X )  e.  B ) )  ->  ( ( ( N `  X ) ( +g  `  G
) ( N `  ( N `  X ) ) )  =  ( ( N `  X
) ( +g  `  G
) X )  <->  ( N `  ( N `  X
) )  =  X ) )
1510, 12, 13, 3, 14syl13anc 1186 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( ( N `
 X ) ( +g  `  G ) ( N `  ( N `  X )
) )  =  ( ( N `  X
) ( +g  `  G
) X )  <->  ( N `  ( N `  X
) )  =  X ) )
169, 15mpbid 202 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  ( N `  X )
)  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   ` cfv 5413  (class class class)co 6040   Basecbs 13424   +g cplusg 13484   0gc0g 13678   Grpcgrp 14640   inv gcminusg 14641
This theorem is referenced by:  grpinv11  14815  grpinvnz  14817  grpsubinv  14819  grpinvsub  14826  grpsubeq0  14830  grpnpcan  14835  mulgneg  14863  mulgdir  14870  mulgass  14875  eqger  14945  frgpuptinv  15358  ablsub2inv  15390  mulgdi  15404  invghm  15408  rngm2neg  15662  unitinvinv  15735  unitnegcl  15741  irrednegb  15771  abvneg  15877  lspsnneg  16037  tgpconcomp  18095  islindf4  27176  baerlem5amN  32199  baerlem5bmN  32200  baerlem5abmN  32201
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-riota 6508  df-0g 13682  df-mnd 14645  df-grp 14767  df-minusg 14768
  Copyright terms: Public domain W3C validator