MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvid1 Structured version   Unicode version

Theorem grpinvid1 15972
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinv.b  |-  B  =  ( Base `  G
)
grpinv.p  |-  .+  =  ( +g  `  G )
grpinv.u  |-  .0.  =  ( 0g `  G )
grpinv.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvid1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  =  Y  <-> 
( X  .+  Y
)  =  .0.  )
)

Proof of Theorem grpinvid1
StepHypRef Expression
1 oveq2 6289 . . . 4  |-  ( ( N `  X )  =  Y  ->  ( X  .+  ( N `  X ) )  =  ( X  .+  Y
) )
21adantl 466 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( N `  X
)  =  Y )  ->  ( X  .+  ( N `  X ) )  =  ( X 
.+  Y ) )
3 grpinv.b . . . . . 6  |-  B  =  ( Base `  G
)
4 grpinv.p . . . . . 6  |-  .+  =  ( +g  `  G )
5 grpinv.u . . . . . 6  |-  .0.  =  ( 0g `  G )
6 grpinv.n . . . . . 6  |-  N  =  ( invg `  G )
73, 4, 5, 6grprinv 15971 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( N `  X )
)  =  .0.  )
873adant3 1017 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( N `  X )
)  =  .0.  )
98adantr 465 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( N `  X
)  =  Y )  ->  ( X  .+  ( N `  X ) )  =  .0.  )
102, 9eqtr3d 2486 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( N `  X
)  =  Y )  ->  ( X  .+  Y )  =  .0.  )
11 oveq2 6289 . . . 4  |-  ( ( X  .+  Y )  =  .0.  ->  (
( N `  X
)  .+  ( X  .+  Y ) )  =  ( ( N `  X )  .+  .0.  ) )
1211adantl 466 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  .+  Y
)  =  .0.  )  ->  ( ( N `  X )  .+  ( X  .+  Y ) )  =  ( ( N `
 X )  .+  .0.  ) )
133, 4, 5, 6grplinv 15970 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  .+  X
)  =  .0.  )
1413oveq1d 6296 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( ( N `
 X )  .+  X )  .+  Y
)  =  (  .0.  .+  Y ) )
15143adant3 1017 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( N `
 X )  .+  X )  .+  Y
)  =  (  .0.  .+  Y ) )
163, 6grpinvcl 15969 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
1716adantrr 716 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( N `  X )  e.  B )
18 simprl 756 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  X  e.  B )
19 simprr 757 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  Y  e.  B )
2017, 18, 193jca 1177 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  (
( N `  X
)  e.  B  /\  X  e.  B  /\  Y  e.  B )
)
213, 4grpass 15938 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( ( N `  X )  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( ( N `  X )  .+  X
)  .+  Y )  =  ( ( N `
 X )  .+  ( X  .+  Y ) ) )
2220, 21syldan 470 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  (
( ( N `  X )  .+  X
)  .+  Y )  =  ( ( N `
 X )  .+  ( X  .+  Y ) ) )
23223impb 1193 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( N `
 X )  .+  X )  .+  Y
)  =  ( ( N `  X ) 
.+  ( X  .+  Y ) ) )
2415, 23eqtr3d 2486 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  (  .0.  .+  Y
)  =  ( ( N `  X ) 
.+  ( X  .+  Y ) ) )
253, 4, 5grplid 15954 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  (  .0.  .+  Y
)  =  Y )
26253adant2 1016 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  (  .0.  .+  Y
)  =  Y )
2724, 26eqtr3d 2486 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  .+  ( X  .+  Y ) )  =  Y )
2827adantr 465 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  .+  Y
)  =  .0.  )  ->  ( ( N `  X )  .+  ( X  .+  Y ) )  =  Y )
293, 4, 5grprid 15955 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( N `  X )  e.  B )  -> 
( ( N `  X )  .+  .0.  )  =  ( N `  X ) )
3016, 29syldan 470 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  .+  .0.  )  =  ( N `  X ) )
31303adant3 1017 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  .+  .0.  )  =  ( N `  X ) )
3231adantr 465 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  .+  Y
)  =  .0.  )  ->  ( ( N `  X )  .+  .0.  )  =  ( N `  X ) )
3312, 28, 323eqtr3rd 2493 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  .+  Y
)  =  .0.  )  ->  ( N `  X
)  =  Y )
3410, 33impbida 832 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  =  Y  <-> 
( X  .+  Y
)  =  .0.  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   ` cfv 5578  (class class class)co 6281   Basecbs 14509   +g cplusg 14574   0gc0g 14714   Grpcgrp 15927   invgcminusg 15928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-0g 14716  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-grp 15931  df-minusg 15932
This theorem is referenced by:  grpinvid  15975  grpinvcnv  15980  grpinvadd  15990  subginv  16082  qusinv  16134  ghminv  16148  symginv  16301  frgpinv  16656  ringnegl  17114  lmodindp1  17534  lmodvsinv2  17557  cnfldneg  18318  zringinvg  18392  mdetunilem6  18992  invrvald  19051  dchrinv  23408  baerlem3lem1  37174
  Copyright terms: Public domain W3C validator