MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpid Structured version   Unicode version

Theorem grpid 16652
Description: Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinveu.b  |-  B  =  ( Base `  G
)
grpinveu.p  |-  .+  =  ( +g  `  G )
grpinveu.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpid  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( X  .+  X )  =  X  <-> 
.0.  =  X ) )

Proof of Theorem grpid
StepHypRef Expression
1 eqcom 2438 . 2  |-  (  .0.  =  X  <->  X  =  .0.  )
2 grpinveu.b . . . . . . 7  |-  B  =  ( Base `  G
)
3 grpinveu.o . . . . . . 7  |-  .0.  =  ( 0g `  G )
42, 3grpidcl 16645 . . . . . 6  |-  ( G  e.  Grp  ->  .0.  e.  B )
5 grpinveu.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
62, 5grprcan 16650 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  .0.  e.  B  /\  X  e.  B )
)  ->  ( ( X  .+  X )  =  (  .0.  .+  X
)  <->  X  =  .0.  ) )
763exp2 1223 . . . . . 6  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  (  .0.  e.  B  -> 
( X  e.  B  ->  ( ( X  .+  X )  =  (  .0.  .+  X )  <->  X  =  .0.  ) ) ) ) )
84, 7mpid 42 . . . . 5  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( X  e.  B  -> 
( ( X  .+  X )  =  (  .0.  .+  X )  <->  X  =  .0.  ) ) ) )
98pm2.43d 50 . . . 4  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( ( X  .+  X
)  =  (  .0.  .+  X )  <->  X  =  .0.  ) ) )
109imp 430 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( X  .+  X )  =  (  .0.  .+  X )  <->  X  =  .0.  ) )
112, 5, 3grplid 16647 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  (  .0.  .+  X
)  =  X )
1211eqeq2d 2443 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( X  .+  X )  =  (  .0.  .+  X )  <->  ( X  .+  X )  =  X ) )
1310, 12bitr3d 258 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  =  .0.  <->  ( X  .+  X )  =  X ) )
141, 13syl5rbb 261 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( X  .+  X )  =  X  <-> 
.0.  =  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870   ` cfv 5601  (class class class)co 6305   Basecbs 15084   +g cplusg 15152   0gc0g 15297   Grpcgrp 16620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-iota 5565  df-fun 5603  df-fv 5609  df-riota 6267  df-ov 6308  df-0g 15299  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-grp 16624
This theorem is referenced by:  isgrpid2  16653  grpidd2  16654  subg0  16774  qus0  16826  ghmid  16840  symgid  16993  isdrng2  17920  lmod0vid  18058  psr0  18558  cnfld0  18927  ldual0v  32424  erng0g  34269
  Copyright terms: Public domain W3C validator