MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grp1 Structured version   Unicode version

Theorem grp1 16709
Description: The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.)
Hypothesis
Ref Expression
grp1.m  |-  M  =  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. }
Assertion
Ref Expression
grp1  |-  ( I  e.  V  ->  M  e.  Grp )

Proof of Theorem grp1
Dummy variables  e 
i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grp1.m . . 3  |-  M  =  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. }
21mnd1 16528 . 2  |-  ( I  e.  V  ->  M  e.  Mnd )
3 df-ov 6308 . . . . 5  |-  ( I { <. <. I ,  I >. ,  I >. } I
)  =  ( {
<. <. I ,  I >. ,  I >. } `  <. I ,  I >. )
4 opex 4686 . . . . . 6  |-  <. I ,  I >.  e.  _V
5 fvsng 6113 . . . . . 6  |-  ( (
<. I ,  I >.  e. 
_V  /\  I  e.  V )  ->  ( { <. <. I ,  I >. ,  I >. } `  <. I ,  I >. )  =  I )
64, 5mpan 674 . . . . 5  |-  ( I  e.  V  ->  ( { <. <. I ,  I >. ,  I >. } `  <. I ,  I >. )  =  I )
73, 6syl5eq 2482 . . . 4  |-  ( I  e.  V  ->  (
I { <. <. I ,  I >. ,  I >. } I )  =  I )
81mnd1id 16530 . . . 4  |-  ( I  e.  V  ->  ( 0g `  M )  =  I )
97, 8eqtr4d 2473 . . 3  |-  ( I  e.  V  ->  (
I { <. <. I ,  I >. ,  I >. } I )  =  ( 0g `  M ) )
10 oveq2 6313 . . . . . . 7  |-  ( i  =  I  ->  (
e { <. <. I ,  I >. ,  I >. } i )  =  ( e { <. <. I ,  I >. ,  I >. } I ) )
1110eqeq1d 2431 . . . . . 6  |-  ( i  =  I  ->  (
( e { <. <.
I ,  I >. ,  I >. } i )  =  ( 0g `  M )  <->  ( e { <. <. I ,  I >. ,  I >. } I
)  =  ( 0g
`  M ) ) )
1211rexbidv 2946 . . . . 5  |-  ( i  =  I  ->  ( E. e  e.  { I }  ( e {
<. <. I ,  I >. ,  I >. } i )  =  ( 0g
`  M )  <->  E. e  e.  { I }  (
e { <. <. I ,  I >. ,  I >. } I )  =  ( 0g `  M ) ) )
1312ralsng 4037 . . . 4  |-  ( I  e.  V  ->  ( A. i  e.  { I } E. e  e.  {
I }  ( e { <. <. I ,  I >. ,  I >. } i )  =  ( 0g
`  M )  <->  E. e  e.  { I }  (
e { <. <. I ,  I >. ,  I >. } I )  =  ( 0g `  M ) ) )
14 oveq1 6312 . . . . . 6  |-  ( e  =  I  ->  (
e { <. <. I ,  I >. ,  I >. } I )  =  ( I { <. <. I ,  I >. ,  I >. } I ) )
1514eqeq1d 2431 . . . . 5  |-  ( e  =  I  ->  (
( e { <. <.
I ,  I >. ,  I >. } I )  =  ( 0g `  M )  <->  ( I { <. <. I ,  I >. ,  I >. } I
)  =  ( 0g
`  M ) ) )
1615rexsng 4038 . . . 4  |-  ( I  e.  V  ->  ( E. e  e.  { I }  ( e {
<. <. I ,  I >. ,  I >. } I
)  =  ( 0g
`  M )  <->  ( I { <. <. I ,  I >. ,  I >. } I
)  =  ( 0g
`  M ) ) )
1713, 16bitrd 256 . . 3  |-  ( I  e.  V  ->  ( A. i  e.  { I } E. e  e.  {
I }  ( e { <. <. I ,  I >. ,  I >. } i )  =  ( 0g
`  M )  <->  ( I { <. <. I ,  I >. ,  I >. } I
)  =  ( 0g
`  M ) ) )
189, 17mpbird 235 . 2  |-  ( I  e.  V  ->  A. i  e.  { I } E. e  e.  { I }  ( e {
<. <. I ,  I >. ,  I >. } i )  =  ( 0g
`  M ) )
19 snex 4663 . . . 4  |-  { I }  e.  _V
201grpbase 15196 . . . 4  |-  ( { I }  e.  _V  ->  { I }  =  ( Base `  M )
)
2119, 20ax-mp 5 . . 3  |-  { I }  =  ( Base `  M )
22 snex 4663 . . . 4  |-  { <. <.
I ,  I >. ,  I >. }  e.  _V
231grpplusg 15197 . . . 4  |-  ( {
<. <. I ,  I >. ,  I >. }  e.  _V  ->  { <. <. I ,  I >. ,  I >. }  =  ( +g  `  M
) )
2422, 23ax-mp 5 . . 3  |-  { <. <.
I ,  I >. ,  I >. }  =  ( +g  `  M )
25 eqid 2429 . . 3  |-  ( 0g
`  M )  =  ( 0g `  M
)
2621, 24, 25isgrp 16628 . 2  |-  ( M  e.  Grp  <->  ( M  e.  Mnd  /\  A. i  e.  { I } E. e  e.  { I }  ( e {
<. <. I ,  I >. ,  I >. } i )  =  ( 0g
`  M ) ) )
272, 18, 26sylanbrc 668 1  |-  ( I  e.  V  ->  M  e.  Grp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1437    e. wcel 1870   A.wral 2782   E.wrex 2783   _Vcvv 3087   {csn 4002   {cpr 4004   <.cop 4008   ` cfv 5601  (class class class)co 6305   ndxcnx 15081   Basecbs 15084   +g cplusg 15152   0gc0g 15297   Mndcmnd 16486   Grpcgrp 16620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11783  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-plusg 15165  df-0g 15299  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-grp 16624
This theorem is referenced by:  abl1  17439  ring1  17765  lmod1  39044
  Copyright terms: Public domain W3C validator