MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothpwex Structured version   Unicode version

Theorem grothpwex 9194
Description: Derive the Axiom of Power Sets from the Tarski-Grothendieck axiom ax-groth 9190. Note that ax-pow 4615 is not used by the proof. Use axpweq 4614 to obtain ax-pow 4615. Use pwex 4620 or pwexg 4621 instead. (Contributed by Gérard Lang, 22-Jun-2009.) (New usage is discouraged.)
Assertion
Ref Expression
grothpwex  |-  ~P x  e.  _V

Proof of Theorem grothpwex
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axgroth5 9191 . 2  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  /\  A. z  e.  ~P  y
( z  ~~  y  \/  z  e.  y
) )
2 simpl 455 . . . . . . . 8  |-  ( ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w
)  ->  ~P z  C_  y )
32ralimi 2847 . . . . . . 7  |-  ( A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  ->  A. z  e.  y  ~P z  C_  y
)
4 pweq 4002 . . . . . . . . 9  |-  ( z  =  x  ->  ~P z  =  ~P x
)
54sseq1d 3516 . . . . . . . 8  |-  ( z  =  x  ->  ( ~P z  C_  y  <->  ~P x  C_  y ) )
65rspccv 3204 . . . . . . 7  |-  ( A. z  e.  y  ~P z  C_  y  ->  (
x  e.  y  ->  ~P x  C_  y ) )
73, 6syl 16 . . . . . 6  |-  ( A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  ->  ( x  e.  y  ->  ~P x  C_  y ) )
87anim2i 567 . . . . 5  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w
) )  ->  (
x  e.  y  /\  ( x  e.  y  ->  ~P x  C_  y
) ) )
983adant3 1014 . . . 4  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w
)  /\  A. z  e.  ~P  y ( z 
~~  y  \/  z  e.  y ) )  -> 
( x  e.  y  /\  ( x  e.  y  ->  ~P x  C_  y ) ) )
10 pm3.35 585 . . . 4  |-  ( ( x  e.  y  /\  ( x  e.  y  ->  ~P x  C_  y
) )  ->  ~P x  C_  y )
11 vex 3109 . . . . 5  |-  y  e. 
_V
1211ssex 4581 . . . 4  |-  ( ~P x  C_  y  ->  ~P x  e.  _V )
139, 10, 123syl 20 . . 3  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w
)  /\  A. z  e.  ~P  y ( z 
~~  y  \/  z  e.  y ) )  ->  ~P x  e.  _V )
1413exlimiv 1727 . 2  |-  ( E. y ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  /\  A. z  e.  ~P  y
( z  ~~  y  \/  z  e.  y
) )  ->  ~P x  e.  _V )
151, 14ax-mp 5 1  |-  ~P x  e.  _V
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 366    /\ wa 367    /\ w3a 971   E.wex 1617    e. wcel 1823   A.wral 2804   E.wrex 2805   _Vcvv 3106    C_ wss 3461   ~Pcpw 3999   class class class wbr 4439    ~~ cen 7506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-groth 9190
This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2809  df-rex 2810  df-v 3108  df-in 3468  df-ss 3475  df-pw 4001
This theorem is referenced by:  isrnsigaOLD  28342
  Copyright terms: Public domain W3C validator