MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothpwex Structured version   Unicode version

Theorem grothpwex 9201
Description: Derive the Axiom of Power Sets from the Tarski-Grothendieck axiom ax-groth 9197. Note that ax-pow 4625 is not used by the proof. Use axpweq 4624 to obtain ax-pow 4625. Use pwex 4630 or pwexg 4631 instead. (Contributed by Gérard Lang, 22-Jun-2009.) (New usage is discouraged.)
Assertion
Ref Expression
grothpwex  |-  ~P x  e.  _V

Proof of Theorem grothpwex
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axgroth5 9198 . 2  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  /\  A. z  e.  ~P  y
( z  ~~  y  \/  z  e.  y
) )
2 simpl 457 . . . . . . . 8  |-  ( ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w
)  ->  ~P z  C_  y )
32ralimi 2857 . . . . . . 7  |-  ( A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  ->  A. z  e.  y  ~P z  C_  y
)
4 pweq 4013 . . . . . . . . 9  |-  ( z  =  x  ->  ~P z  =  ~P x
)
54sseq1d 3531 . . . . . . . 8  |-  ( z  =  x  ->  ( ~P z  C_  y  <->  ~P x  C_  y ) )
65rspccv 3211 . . . . . . 7  |-  ( A. z  e.  y  ~P z  C_  y  ->  (
x  e.  y  ->  ~P x  C_  y ) )
73, 6syl 16 . . . . . 6  |-  ( A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  ->  ( x  e.  y  ->  ~P x  C_  y ) )
87anim2i 569 . . . . 5  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w
) )  ->  (
x  e.  y  /\  ( x  e.  y  ->  ~P x  C_  y
) ) )
983adant3 1016 . . . 4  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w
)  /\  A. z  e.  ~P  y ( z 
~~  y  \/  z  e.  y ) )  -> 
( x  e.  y  /\  ( x  e.  y  ->  ~P x  C_  y ) ) )
10 pm3.35 587 . . . 4  |-  ( ( x  e.  y  /\  ( x  e.  y  ->  ~P x  C_  y
) )  ->  ~P x  C_  y )
11 vex 3116 . . . . 5  |-  y  e. 
_V
1211ssex 4591 . . . 4  |-  ( ~P x  C_  y  ->  ~P x  e.  _V )
139, 10, 123syl 20 . . 3  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w
)  /\  A. z  e.  ~P  y ( z 
~~  y  \/  z  e.  y ) )  ->  ~P x  e.  _V )
1413exlimiv 1698 . 2  |-  ( E. y ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  /\  A. z  e.  ~P  y
( z  ~~  y  \/  z  e.  y
) )  ->  ~P x  e.  _V )
151, 14ax-mp 5 1  |-  ~P x  e.  _V
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 973   E.wex 1596    e. wcel 1767   A.wral 2814   E.wrex 2815   _Vcvv 3113    C_ wss 3476   ~Pcpw 4010   class class class wbr 4447    ~~ cen 7510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-groth 9197
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2819  df-rex 2820  df-v 3115  df-in 3483  df-ss 3490  df-pw 4012
This theorem is referenced by:  isrnsigaOLD  27752
  Copyright terms: Public domain W3C validator