MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothprim Unicode version

Theorem grothprim 8665
Description: The Tarski-Grothendieck Axiom ax-groth 8654 expanded into set theory primitives using 163 symbols (allowing the defined symbols  /\,  \/,  <->, and  E.). An open problem is whether a shorter equivalent exists (when expanded to primitives). (Contributed by NM, 16-Apr-2007.)
Assertion
Ref Expression
grothprim  |-  E. y
( x  e.  y  /\  A. z ( ( z  e.  y  ->  E. v ( v  e.  y  /\  A. w ( A. u
( u  e.  w  ->  u  e.  z )  ->  ( w  e.  y  /\  w  e.  v ) ) ) )  /\  E. w
( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) ) )
Distinct variable group:    x, y, z, w, v, u, t, h, g

Proof of Theorem grothprim
StepHypRef Expression
1 axgroth4 8663 . 2  |-  E. y
( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) )
2 3anass 940 . . . 4  |-  ( ( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z
( z  C_  y  ->  ( ( y  \ 
z )  ~<_  z  \/  z  e.  y ) ) )  <->  ( x  e.  y  /\  ( A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z
( z  C_  y  ->  ( ( y  \ 
z )  ~<_  z  \/  z  e.  y ) ) ) ) )
3 dfss2 3297 . . . . . . . . . . . . 13  |-  ( w 
C_  z  <->  A. u
( u  e.  w  ->  u  e.  z ) )
4 elin 3490 . . . . . . . . . . . . 13  |-  ( w  e.  ( y  i^i  v )  <->  ( w  e.  y  /\  w  e.  v ) )
53, 4imbi12i 317 . . . . . . . . . . . 12  |-  ( ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  <->  ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) )
65albii 1572 . . . . . . . . . . 11  |-  ( A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  <->  A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) )
76rexbii 2691 . . . . . . . . . 10  |-  ( E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  <->  E. v  e.  y 
A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) )
8 df-rex 2672 . . . . . . . . . 10  |-  ( E. v  e.  y  A. w ( A. u
( u  e.  w  ->  u  e.  z )  ->  ( w  e.  y  /\  w  e.  v ) )  <->  E. v
( v  e.  y  /\  A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) ) )
97, 8bitri 241 . . . . . . . . 9  |-  ( E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  <->  E. v ( v  e.  y  /\  A. w ( A. u
( u  e.  w  ->  u  e.  z )  ->  ( w  e.  y  /\  w  e.  v ) ) ) )
109ralbii 2690 . . . . . . . 8  |-  ( A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  <->  A. z  e.  y  E. v ( v  e.  y  /\  A. w ( A. u
( u  e.  w  ->  u  e.  z )  ->  ( w  e.  y  /\  w  e.  v ) ) ) )
11 df-ral 2671 . . . . . . . 8  |-  ( A. z  e.  y  E. v ( v  e.  y  /\  A. w
( A. u ( u  e.  w  ->  u  e.  z )  ->  ( w  e.  y  /\  w  e.  v ) ) )  <->  A. z
( z  e.  y  ->  E. v ( v  e.  y  /\  A. w ( A. u
( u  e.  w  ->  u  e.  z )  ->  ( w  e.  y  /\  w  e.  v ) ) ) ) )
1210, 11bitri 241 . . . . . . 7  |-  ( A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  <->  A. z ( z  e.  y  ->  E. v
( v  e.  y  /\  A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) ) ) )
13 dfss2 3297 . . . . . . . . . . 11  |-  ( z 
C_  y  <->  A. w
( w  e.  z  ->  w  e.  y ) )
14 vex 2919 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
15 difexg 4311 . . . . . . . . . . . . . . 15  |-  ( y  e.  _V  ->  (
y  \  z )  e.  _V )
1614, 15ax-mp 8 . . . . . . . . . . . . . 14  |-  ( y 
\  z )  e. 
_V
17 vex 2919 . . . . . . . . . . . . . 14  |-  z  e. 
_V
18 incom 3493 . . . . . . . . . . . . . . 15  |-  ( ( y  \  z )  i^i  z )  =  ( z  i^i  (
y  \  z )
)
19 disjdif 3660 . . . . . . . . . . . . . . 15  |-  ( z  i^i  ( y  \ 
z ) )  =  (/)
2018, 19eqtri 2424 . . . . . . . . . . . . . 14  |-  ( ( y  \  z )  i^i  z )  =  (/)
2116, 17, 20brdom6disj 8366 . . . . . . . . . . . . 13  |-  ( ( y  \  z )  ~<_  z  <->  E. w ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y 
\  z ) E. u  e.  z  {
u ,  v }  e.  w ) )
2221orbi1i 507 . . . . . . . . . . . 12  |-  ( ( ( y  \  z
)  ~<_  z  \/  z  e.  y )  <->  ( E. w ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y 
\  z ) E. u  e.  z  {
u ,  v }  e.  w )  \/  z  e.  y ) )
23 nfv 1626 . . . . . . . . . . . . 13  |-  F/ w  z  e.  y
242319.44 1894 . . . . . . . . . . . 12  |-  ( E. w ( ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y 
\  z ) E. u  e.  z  {
u ,  v }  e.  w )  \/  z  e.  y )  <-> 
( E. w ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y  \  z
) E. u  e.  z  { u ,  v }  e.  w
)  \/  z  e.  y ) )
2522, 24bitr4i 244 . . . . . . . . . . 11  |-  ( ( ( y  \  z
)  ~<_  z  \/  z  e.  y )  <->  E. w
( ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y 
\  z ) E. u  e.  z  {
u ,  v }  e.  w )  \/  z  e.  y ) )
2613, 25imbi12i 317 . . . . . . . . . 10  |-  ( ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) )  <->  ( A. w ( w  e.  z  ->  w  e.  y )  ->  E. w
( ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y 
\  z ) E. u  e.  z  {
u ,  v }  e.  w )  \/  z  e.  y ) ) )
27 19.35 1607 . . . . . . . . . 10  |-  ( E. w ( ( w  e.  z  ->  w  e.  y )  ->  (
( A. v  e.  z  E* u {
v ,  u }  e.  w  /\  A. v  e.  ( y  \  z
) E. u  e.  z  { u ,  v }  e.  w
)  \/  z  e.  y ) )  <->  ( A. w ( w  e.  z  ->  w  e.  y )  ->  E. w
( ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y 
\  z ) E. u  e.  z  {
u ,  v }  e.  w )  \/  z  e.  y ) ) )
2826, 27bitr4i 244 . . . . . . . . 9  |-  ( ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) )  <->  E. w
( ( w  e.  z  ->  w  e.  y )  ->  (
( A. v  e.  z  E* u {
v ,  u }  e.  w  /\  A. v  e.  ( y  \  z
) E. u  e.  z  { u ,  v }  e.  w
)  \/  z  e.  y ) ) )
29 grothprimlem 8664 . . . . . . . . . . . . . . . . . 18  |-  ( { v ,  u }  e.  w  <->  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) ) )
3029mobii 2290 . . . . . . . . . . . . . . . . 17  |-  ( E* u { v ,  u }  e.  w  <->  E* u E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) ) )
31 nfv 1626 . . . . . . . . . . . . . . . . . 18  |-  F/ t E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )
3231mo2 2283 . . . . . . . . . . . . . . . . 17  |-  ( E* u E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  <->  E. t A. u ( E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )
3330, 32bitri 241 . . . . . . . . . . . . . . . 16  |-  ( E* u { v ,  u }  e.  w  <->  E. t A. u ( E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )
3433ralbii 2690 . . . . . . . . . . . . . . 15  |-  ( A. v  e.  z  E* u { v ,  u }  e.  w  <->  A. v  e.  z  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )
35 df-ral 2671 . . . . . . . . . . . . . . 15  |-  ( A. v  e.  z  E. t A. u ( E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  v  \/  h  =  u ) ) )  ->  u  =  t )  <->  A. v ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) ) )
3634, 35bitri 241 . . . . . . . . . . . . . 14  |-  ( A. v  e.  z  E* u { v ,  u }  e.  w  <->  A. v
( v  e.  z  ->  E. t A. u
( E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) ) )
37 df-ral 2671 . . . . . . . . . . . . . . 15  |-  ( A. v  e.  ( y  \  z ) E. u  e.  z  {
u ,  v }  e.  w  <->  A. v
( v  e.  ( y  \  z )  ->  E. u  e.  z  { u ,  v }  e.  w ) )
38 eldif 3290 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  ( y  \ 
z )  <->  ( v  e.  y  /\  -.  v  e.  z ) )
39 grothprimlem 8664 . . . . . . . . . . . . . . . . . . . 20  |-  ( { u ,  v }  e.  w  <->  E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) )
4039rexbii 2691 . . . . . . . . . . . . . . . . . . 19  |-  ( E. u  e.  z  {
u ,  v }  e.  w  <->  E. u  e.  z  E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) )
41 df-rex 2672 . . . . . . . . . . . . . . . . . . 19  |-  ( E. u  e.  z  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) )  <->  E. u
( u  e.  z  /\  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) )
4240, 41bitri 241 . . . . . . . . . . . . . . . . . 18  |-  ( E. u  e.  z  {
u ,  v }  e.  w  <->  E. u
( u  e.  z  /\  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) )
4338, 42imbi12i 317 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  ( y 
\  z )  ->  E. u  e.  z  { u ,  v }  e.  w )  <-> 
( ( v  e.  y  /\  -.  v  e.  z )  ->  E. u
( u  e.  z  /\  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) ) )
44 pm5.6 879 . . . . . . . . . . . . . . . . 17  |-  ( ( ( v  e.  y  /\  -.  v  e.  z )  ->  E. u
( u  e.  z  /\  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) )  <->  ( v  e.  y  ->  ( v  e.  z  \/  E. u ( u  e.  z  /\  E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) ) ) )
4543, 44bitri 241 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  ( y 
\  z )  ->  E. u  e.  z  { u ,  v }  e.  w )  <-> 
( v  e.  y  ->  ( v  e.  z  \/  E. u
( u  e.  z  /\  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) ) ) )
4645albii 1572 . . . . . . . . . . . . . . 15  |-  ( A. v ( v  e.  ( y  \  z
)  ->  E. u  e.  z  { u ,  v }  e.  w )  <->  A. v
( v  e.  y  ->  ( v  e.  z  \/  E. u
( u  e.  z  /\  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) ) ) )
4737, 46bitri 241 . . . . . . . . . . . . . 14  |-  ( A. v  e.  ( y  \  z ) E. u  e.  z  {
u ,  v }  e.  w  <->  A. v
( v  e.  y  ->  ( v  e.  z  \/  E. u
( u  e.  z  /\  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) ) ) )
4836, 47anbi12i 679 . . . . . . . . . . . . 13  |-  ( ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y  \  z
) E. u  e.  z  { u ,  v }  e.  w
)  <->  ( A. v
( v  e.  z  ->  E. t A. u
( E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  A. v ( v  e.  y  ->  ( v  e.  z  \/  E. u
( u  e.  z  /\  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) ) ) ) )
49 19.26 1600 . . . . . . . . . . . . 13  |-  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  <->  ( A. v ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  A. v ( v  e.  y  ->  ( v  e.  z  \/  E. u
( u  e.  z  /\  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) ) ) ) )
5048, 49bitr4i 244 . . . . . . . . . . . 12  |-  ( ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y  \  z
) E. u  e.  z  { u ,  v }  e.  w
)  <->  A. v ( ( v  e.  z  ->  E. t A. u ( E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) ) )
5150orbi1i 507 . . . . . . . . . . 11  |-  ( ( ( A. v  e.  z  E* u {
v ,  u }  e.  w  /\  A. v  e.  ( y  \  z
) E. u  e.  z  { u ,  v }  e.  w
)  \/  z  e.  y )  <->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) )
5251imbi2i 304 . . . . . . . . . 10  |-  ( ( ( w  e.  z  ->  w  e.  y )  ->  ( ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y  \  z ) E. u  e.  z  { u ,  v }  e.  w )  \/  z  e.  y ) )  <->  ( (
w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u
( E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) )
5352exbii 1589 . . . . . . . . 9  |-  ( E. w ( ( w  e.  z  ->  w  e.  y )  ->  (
( A. v  e.  z  E* u {
v ,  u }  e.  w  /\  A. v  e.  ( y  \  z
) E. u  e.  z  { u ,  v }  e.  w
)  \/  z  e.  y ) )  <->  E. w
( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) )
5428, 53bitri 241 . . . . . . . 8  |-  ( ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) )  <->  E. w
( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) )
5554albii 1572 . . . . . . 7  |-  ( A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) )  <->  A. z E. w ( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) )
5612, 55anbi12i 679 . . . . . 6  |-  ( ( A. z  e.  y  E. v  e.  y 
A. w ( w 
C_  z  ->  w  e.  ( y  i^i  v
) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) )  <->  ( A. z ( z  e.  y  ->  E. v
( v  e.  y  /\  A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) ) )  /\  A. z E. w ( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) ) )
57 19.26 1600 . . . . . 6  |-  ( A. z ( ( z  e.  y  ->  E. v
( v  e.  y  /\  A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) ) )  /\  E. w ( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) )  <->  ( A. z ( z  e.  y  ->  E. v
( v  e.  y  /\  A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) ) )  /\  A. z E. w ( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) ) )
5856, 57bitr4i 244 . . . . 5  |-  ( ( A. z  e.  y  E. v  e.  y 
A. w ( w 
C_  z  ->  w  e.  ( y  i^i  v
) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) )  <->  A. z
( ( z  e.  y  ->  E. v
( v  e.  y  /\  A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) ) )  /\  E. w ( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) ) )
5958anbi2i 676 . . . 4  |-  ( ( x  e.  y  /\  ( A. z  e.  y  E. v  e.  y 
A. w ( w 
C_  z  ->  w  e.  ( y  i^i  v
) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) ) )  <-> 
( x  e.  y  /\  A. z ( ( z  e.  y  ->  E. v ( v  e.  y  /\  A. w ( A. u
( u  e.  w  ->  u  e.  z )  ->  ( w  e.  y  /\  w  e.  v ) ) ) )  /\  E. w
( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) ) ) )
602, 59bitri 241 . . 3  |-  ( ( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z
( z  C_  y  ->  ( ( y  \ 
z )  ~<_  z  \/  z  e.  y ) ) )  <->  ( x  e.  y  /\  A. z
( ( z  e.  y  ->  E. v
( v  e.  y  /\  A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) ) )  /\  E. w ( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) ) ) )
6160exbii 1589 . 2  |-  ( E. y ( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w
( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) ) )  <->  E. y ( x  e.  y  /\  A. z
( ( z  e.  y  ->  E. v
( v  e.  y  /\  A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) ) )  /\  E. w ( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) ) ) )
621, 61mpbi 200 1  |-  E. y
( x  e.  y  /\  A. z ( ( z  e.  y  ->  E. v ( v  e.  y  /\  A. w ( A. u
( u  e.  w  ->  u  e.  z )  ->  ( w  e.  y  /\  w  e.  v ) ) ) )  /\  E. w
( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936   A.wal 1546   E.wex 1547    e. wcel 1721   E*wmo 2255   A.wral 2666   E.wrex 2667   _Vcvv 2916    \ cdif 3277    i^i cin 3279    C_ wss 3280   (/)c0 3588   {cpr 3775   class class class wbr 4172    ~<_ cdom 7066
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-reg 7516  ax-inf2 7552  ax-cc 8271  ax-ac2 8299  ax-groth 8654
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-oi 7435  df-card 7782  df-acn 7785  df-ac 7953  df-cda 8004
  Copyright terms: Public domain W3C validator