MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothprim Structured version   Visualization version   Unicode version

Theorem grothprim 9285
Description: The Tarski-Grothendieck Axiom ax-groth 9274 expanded into set theory primitives using 163 symbols (allowing the defined symbols  /\,  \/,  <->, and  E.). An open problem is whether a shorter equivalent exists (when expanded to primitives). (Contributed by NM, 16-Apr-2007.)
Assertion
Ref Expression
grothprim  |-  E. y
( x  e.  y  /\  A. z ( ( z  e.  y  ->  E. v ( v  e.  y  /\  A. w ( A. u
( u  e.  w  ->  u  e.  z )  ->  ( w  e.  y  /\  w  e.  v ) ) ) )  /\  E. w
( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) ) )
Distinct variable group:    x, y, z, w, v, u, t, h, g

Proof of Theorem grothprim
StepHypRef Expression
1 axgroth4 9283 . 2  |-  E. y
( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) )
2 3anass 995 . . . 4  |-  ( ( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z
( z  C_  y  ->  ( ( y  \ 
z )  ~<_  z  \/  z  e.  y ) ) )  <->  ( x  e.  y  /\  ( A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z
( z  C_  y  ->  ( ( y  \ 
z )  ~<_  z  \/  z  e.  y ) ) ) ) )
3 dfss2 3433 . . . . . . . . . . . . 13  |-  ( w 
C_  z  <->  A. u
( u  e.  w  ->  u  e.  z ) )
4 elin 3629 . . . . . . . . . . . . 13  |-  ( w  e.  ( y  i^i  v )  <->  ( w  e.  y  /\  w  e.  v ) )
53, 4imbi12i 332 . . . . . . . . . . . 12  |-  ( ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  <->  ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) )
65albii 1702 . . . . . . . . . . 11  |-  ( A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  <->  A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) )
76rexbii 2901 . . . . . . . . . 10  |-  ( E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  <->  E. v  e.  y 
A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) )
8 df-rex 2755 . . . . . . . . . 10  |-  ( E. v  e.  y  A. w ( A. u
( u  e.  w  ->  u  e.  z )  ->  ( w  e.  y  /\  w  e.  v ) )  <->  E. v
( v  e.  y  /\  A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) ) )
97, 8bitri 257 . . . . . . . . 9  |-  ( E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  <->  E. v ( v  e.  y  /\  A. w ( A. u
( u  e.  w  ->  u  e.  z )  ->  ( w  e.  y  /\  w  e.  v ) ) ) )
109ralbii 2831 . . . . . . . 8  |-  ( A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  <->  A. z  e.  y  E. v ( v  e.  y  /\  A. w ( A. u
( u  e.  w  ->  u  e.  z )  ->  ( w  e.  y  /\  w  e.  v ) ) ) )
11 df-ral 2754 . . . . . . . 8  |-  ( A. z  e.  y  E. v ( v  e.  y  /\  A. w
( A. u ( u  e.  w  ->  u  e.  z )  ->  ( w  e.  y  /\  w  e.  v ) ) )  <->  A. z
( z  e.  y  ->  E. v ( v  e.  y  /\  A. w ( A. u
( u  e.  w  ->  u  e.  z )  ->  ( w  e.  y  /\  w  e.  v ) ) ) ) )
1210, 11bitri 257 . . . . . . 7  |-  ( A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  <->  A. z ( z  e.  y  ->  E. v
( v  e.  y  /\  A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) ) ) )
13 dfss2 3433 . . . . . . . . . . 11  |-  ( z 
C_  y  <->  A. w
( w  e.  z  ->  w  e.  y ) )
14 vex 3060 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
15 difexg 4565 . . . . . . . . . . . . . . 15  |-  ( y  e.  _V  ->  (
y  \  z )  e.  _V )
1614, 15ax-mp 5 . . . . . . . . . . . . . 14  |-  ( y 
\  z )  e. 
_V
17 vex 3060 . . . . . . . . . . . . . 14  |-  z  e. 
_V
18 incom 3637 . . . . . . . . . . . . . . 15  |-  ( ( y  \  z )  i^i  z )  =  ( z  i^i  (
y  \  z )
)
19 disjdif 3851 . . . . . . . . . . . . . . 15  |-  ( z  i^i  ( y  \ 
z ) )  =  (/)
2018, 19eqtri 2484 . . . . . . . . . . . . . 14  |-  ( ( y  \  z )  i^i  z )  =  (/)
2116, 17, 20brdom6disj 8986 . . . . . . . . . . . . 13  |-  ( ( y  \  z )  ~<_  z  <->  E. w ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y 
\  z ) E. u  e.  z  {
u ,  v }  e.  w ) )
2221orbi1i 527 . . . . . . . . . . . 12  |-  ( ( ( y  \  z
)  ~<_  z  \/  z  e.  y )  <->  ( E. w ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y 
\  z ) E. u  e.  z  {
u ,  v }  e.  w )  \/  z  e.  y ) )
23 19.44v 1839 . . . . . . . . . . . 12  |-  ( E. w ( ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y 
\  z ) E. u  e.  z  {
u ,  v }  e.  w )  \/  z  e.  y )  <-> 
( E. w ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y  \  z
) E. u  e.  z  { u ,  v }  e.  w
)  \/  z  e.  y ) )
2422, 23bitr4i 260 . . . . . . . . . . 11  |-  ( ( ( y  \  z
)  ~<_  z  \/  z  e.  y )  <->  E. w
( ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y 
\  z ) E. u  e.  z  {
u ,  v }  e.  w )  \/  z  e.  y ) )
2513, 24imbi12i 332 . . . . . . . . . 10  |-  ( ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) )  <->  ( A. w ( w  e.  z  ->  w  e.  y )  ->  E. w
( ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y 
\  z ) E. u  e.  z  {
u ,  v }  e.  w )  \/  z  e.  y ) ) )
26 19.35 1751 . . . . . . . . . 10  |-  ( E. w ( ( w  e.  z  ->  w  e.  y )  ->  (
( A. v  e.  z  E* u {
v ,  u }  e.  w  /\  A. v  e.  ( y  \  z
) E. u  e.  z  { u ,  v }  e.  w
)  \/  z  e.  y ) )  <->  ( A. w ( w  e.  z  ->  w  e.  y )  ->  E. w
( ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y 
\  z ) E. u  e.  z  {
u ,  v }  e.  w )  \/  z  e.  y ) ) )
2725, 26bitr4i 260 . . . . . . . . 9  |-  ( ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) )  <->  E. w
( ( w  e.  z  ->  w  e.  y )  ->  (
( A. v  e.  z  E* u {
v ,  u }  e.  w  /\  A. v  e.  ( y  \  z
) E. u  e.  z  { u ,  v }  e.  w
)  \/  z  e.  y ) ) )
28 grothprimlem 9284 . . . . . . . . . . . . . . . . . 18  |-  ( { v ,  u }  e.  w  <->  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) ) )
2928mobii 2333 . . . . . . . . . . . . . . . . 17  |-  ( E* u { v ,  u }  e.  w  <->  E* u E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) ) )
30 mo2v 2317 . . . . . . . . . . . . . . . . 17  |-  ( E* u E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  <->  E. t A. u ( E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )
3129, 30bitri 257 . . . . . . . . . . . . . . . 16  |-  ( E* u { v ,  u }  e.  w  <->  E. t A. u ( E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )
3231ralbii 2831 . . . . . . . . . . . . . . 15  |-  ( A. v  e.  z  E* u { v ,  u }  e.  w  <->  A. v  e.  z  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )
33 df-ral 2754 . . . . . . . . . . . . . . 15  |-  ( A. v  e.  z  E. t A. u ( E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  v  \/  h  =  u ) ) )  ->  u  =  t )  <->  A. v ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) ) )
3432, 33bitri 257 . . . . . . . . . . . . . 14  |-  ( A. v  e.  z  E* u { v ,  u }  e.  w  <->  A. v
( v  e.  z  ->  E. t A. u
( E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) ) )
35 df-ral 2754 . . . . . . . . . . . . . . 15  |-  ( A. v  e.  ( y  \  z ) E. u  e.  z  {
u ,  v }  e.  w  <->  A. v
( v  e.  ( y  \  z )  ->  E. u  e.  z  { u ,  v }  e.  w ) )
36 eldif 3426 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  ( y  \ 
z )  <->  ( v  e.  y  /\  -.  v  e.  z ) )
37 grothprimlem 9284 . . . . . . . . . . . . . . . . . . . 20  |-  ( { u ,  v }  e.  w  <->  E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) )
3837rexbii 2901 . . . . . . . . . . . . . . . . . . 19  |-  ( E. u  e.  z  {
u ,  v }  e.  w  <->  E. u  e.  z  E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) )
39 df-rex 2755 . . . . . . . . . . . . . . . . . . 19  |-  ( E. u  e.  z  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) )  <->  E. u
( u  e.  z  /\  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) )
4038, 39bitri 257 . . . . . . . . . . . . . . . . . 18  |-  ( E. u  e.  z  {
u ,  v }  e.  w  <->  E. u
( u  e.  z  /\  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) )
4136, 40imbi12i 332 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  ( y 
\  z )  ->  E. u  e.  z  { u ,  v }  e.  w )  <-> 
( ( v  e.  y  /\  -.  v  e.  z )  ->  E. u
( u  e.  z  /\  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) ) )
42 pm5.6 928 . . . . . . . . . . . . . . . . 17  |-  ( ( ( v  e.  y  /\  -.  v  e.  z )  ->  E. u
( u  e.  z  /\  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) )  <->  ( v  e.  y  ->  ( v  e.  z  \/  E. u ( u  e.  z  /\  E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) ) ) )
4341, 42bitri 257 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  ( y 
\  z )  ->  E. u  e.  z  { u ,  v }  e.  w )  <-> 
( v  e.  y  ->  ( v  e.  z  \/  E. u
( u  e.  z  /\  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) ) ) )
4443albii 1702 . . . . . . . . . . . . . . 15  |-  ( A. v ( v  e.  ( y  \  z
)  ->  E. u  e.  z  { u ,  v }  e.  w )  <->  A. v
( v  e.  y  ->  ( v  e.  z  \/  E. u
( u  e.  z  /\  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) ) ) )
4535, 44bitri 257 . . . . . . . . . . . . . 14  |-  ( A. v  e.  ( y  \  z ) E. u  e.  z  {
u ,  v }  e.  w  <->  A. v
( v  e.  y  ->  ( v  e.  z  \/  E. u
( u  e.  z  /\  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) ) ) )
4634, 45anbi12i 708 . . . . . . . . . . . . 13  |-  ( ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y  \  z
) E. u  e.  z  { u ,  v }  e.  w
)  <->  ( A. v
( v  e.  z  ->  E. t A. u
( E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  A. v ( v  e.  y  ->  ( v  e.  z  \/  E. u
( u  e.  z  /\  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) ) ) ) )
47 19.26 1743 . . . . . . . . . . . . 13  |-  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  <->  ( A. v ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  A. v ( v  e.  y  ->  ( v  e.  z  \/  E. u
( u  e.  z  /\  E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  u  \/  h  =  v ) ) ) ) ) ) ) )
4846, 47bitr4i 260 . . . . . . . . . . . 12  |-  ( ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y  \  z
) E. u  e.  z  { u ,  v }  e.  w
)  <->  A. v ( ( v  e.  z  ->  E. t A. u ( E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) ) )
4948orbi1i 527 . . . . . . . . . . 11  |-  ( ( ( A. v  e.  z  E* u {
v ,  u }  e.  w  /\  A. v  e.  ( y  \  z
) E. u  e.  z  { u ,  v }  e.  w
)  \/  z  e.  y )  <->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) )
5049imbi2i 318 . . . . . . . . . 10  |-  ( ( ( w  e.  z  ->  w  e.  y )  ->  ( ( A. v  e.  z  E* u { v ,  u }  e.  w  /\  A. v  e.  ( y  \  z ) E. u  e.  z  { u ,  v }  e.  w )  \/  z  e.  y ) )  <->  ( (
w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u
( E. g ( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) )
5150exbii 1729 . . . . . . . . 9  |-  ( E. w ( ( w  e.  z  ->  w  e.  y )  ->  (
( A. v  e.  z  E* u {
v ,  u }  e.  w  /\  A. v  e.  ( y  \  z
) E. u  e.  z  { u ,  v }  e.  w
)  \/  z  e.  y ) )  <->  E. w
( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) )
5227, 51bitri 257 . . . . . . . 8  |-  ( ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) )  <->  E. w
( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) )
5352albii 1702 . . . . . . 7  |-  ( A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) )  <->  A. z E. w ( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) )
5412, 53anbi12i 708 . . . . . 6  |-  ( ( A. z  e.  y  E. v  e.  y 
A. w ( w 
C_  z  ->  w  e.  ( y  i^i  v
) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) )  <->  ( A. z ( z  e.  y  ->  E. v
( v  e.  y  /\  A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) ) )  /\  A. z E. w ( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) ) )
55 19.26 1743 . . . . . 6  |-  ( A. z ( ( z  e.  y  ->  E. v
( v  e.  y  /\  A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) ) )  /\  E. w ( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) )  <->  ( A. z ( z  e.  y  ->  E. v
( v  e.  y  /\  A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) ) )  /\  A. z E. w ( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) ) )
5654, 55bitr4i 260 . . . . 5  |-  ( ( A. z  e.  y  E. v  e.  y 
A. w ( w 
C_  z  ->  w  e.  ( y  i^i  v
) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) )  <->  A. z
( ( z  e.  y  ->  E. v
( v  e.  y  /\  A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) ) )  /\  E. w ( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) ) )
5756anbi2i 705 . . . 4  |-  ( ( x  e.  y  /\  ( A. z  e.  y  E. v  e.  y 
A. w ( w 
C_  z  ->  w  e.  ( y  i^i  v
) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) ) )  <-> 
( x  e.  y  /\  A. z ( ( z  e.  y  ->  E. v ( v  e.  y  /\  A. w ( A. u
( u  e.  w  ->  u  e.  z )  ->  ( w  e.  y  /\  w  e.  v ) ) ) )  /\  E. w
( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) ) ) )
582, 57bitri 257 . . 3  |-  ( ( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z
( z  C_  y  ->  ( ( y  \ 
z )  ~<_  z  \/  z  e.  y ) ) )  <->  ( x  e.  y  /\  A. z
( ( z  e.  y  ->  E. v
( v  e.  y  /\  A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) ) )  /\  E. w ( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) ) ) )
5958exbii 1729 . 2  |-  ( E. y ( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w
( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) ) )  <->  E. y ( x  e.  y  /\  A. z
( ( z  e.  y  ->  E. v
( v  e.  y  /\  A. w ( A. u ( u  e.  w  ->  u  e.  z )  ->  (
w  e.  y  /\  w  e.  v )
) ) )  /\  E. w ( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) ) ) )
601, 59mpbi 213 1  |-  E. y
( x  e.  y  /\  A. z ( ( z  e.  y  ->  E. v ( v  e.  y  /\  A. w ( A. u
( u  e.  w  ->  u  e.  z )  ->  ( w  e.  y  /\  w  e.  v ) ) ) )  /\  E. w
( ( w  e.  z  ->  w  e.  y )  ->  ( A. v ( ( v  e.  z  ->  E. t A. u ( E. g
( g  e.  w  /\  A. h ( h  e.  g  <->  ( h  =  v  \/  h  =  u ) ) )  ->  u  =  t ) )  /\  (
v  e.  y  -> 
( v  e.  z  \/  E. u ( u  e.  z  /\  E. g ( g  e.  w  /\  A. h
( h  e.  g  <-> 
( h  =  u  \/  h  =  v ) ) ) ) ) ) )  \/  z  e.  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 374    /\ wa 375    /\ w3a 991   A.wal 1453   E.wex 1674    e. wcel 1898   E*wmo 2311   A.wral 2749   E.wrex 2750   _Vcvv 3057    \ cdif 3413    i^i cin 3415    C_ wss 3416   (/)c0 3743   {cpr 3982   class class class wbr 4416    ~<_ cdom 7593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-reg 8133  ax-inf2 8172  ax-cc 8891  ax-ac2 8919  ax-groth 9274
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-om 6720  df-1st 6820  df-2nd 6821  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-1o 7208  df-2o 7209  df-oadd 7212  df-er 7389  df-map 7500  df-en 7596  df-dom 7597  df-sdom 7598  df-fin 7599  df-oi 8051  df-card 8399  df-acn 8402  df-ac 8573  df-cda 8624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator